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Abstract

This dissertation investigates the association between public debt, high inflation and

economics depression by using the survival analysis approach.

In the first chapter, I use non-parametric survival analysis to check the association

between high debt episodes and high inflation episodes. Both the Kaplan-Meier

estimate and the Nelson-Aelon analysis indicate that the existence of an overlapping

high inflation episode is correlated with longer duration of high debt episodes. The

reverse is also true: the existence of a high debt episode overlap is associated with

longer duration of high inflation episodes. Whether or not the country is a member

of the OECD does not matter for the survival experience.

In the second chapter, I use the Cox PH model, the exponential model and the

Weibull model to analyze the survival experience of high debt episodes and high

inflation episodes. I first consider the duration of high debt episodes (HDEs). Across

all specifications, HDE duration depends on two variables: (1) the existence of an

overlap with a high inflation episode; (2) the growth rate of GDP. These effects are

not independent. At high GDP growth, an HIF overlap is associated with a shorter

HDE. At low GDP growth, however, an HIF overlap is associated with a longer

HDE. I also examine the duration of HIFs, using HDE overlap and GDP growth as

regressors. Interestingly, the results are mixed and there is no evidence of interaction

between HDE overlap and GDP growth.

Debt of the public sector has been associated with low, or even negative, growth.

This position is most closely associated with Reinhart and Rogoff (2010). In the third

chapter, we analyze the duration of economic crises, in the form of depressions, to see
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if there is an association with consecutive years of high public-debt-to-GDP ratios.

We find that high debt is positively correlated with the duration of depressions while

inflation is negatively correlated with such duration.

The last chapter uses parametric survival analysis to analyze the duration of eco-

nomic crises to see if they have an association with the occurrence of consecutive

years of high public-debt-to-GDP ratios. By comparing the results from five para-

metric models, including the exponential, the Weibull, the log-normal, the log-logistic,

and the generalized gamma regression, all of which have the accelerated failure time

(AFT) metric, I find that there is a positive association between high debt episodes

and the length of economic crises. All of the results are consistent with each other

throughout the models. The main results were not refuted by adding covariates

including economic factors, political factors, cultural factors and financial crises as

controls.
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Chapter 1

Survival Analysis of Episode of High Debt and

High Inflation: A Non-parametric Approach

1.1 Introduction

One aftermath of the great recession is rising levels of public debt. For example, the

public debt to GDP ratio for all the G7 countries increased between the year 2006

and 2016. One problem with the sustained high level of sovereign debt is it may

hamper long run economic development since it not only shows dangerous signals

of the government fiscal sustainability, but may reduce the private investment and

lower productivity of the country in the long run. Even though empirically and

theoretically, no papers have provided strong evidence about whether the causality

goes from high public debt to slower economic growth or vice versa, exploring the

question of which factors are correlated with high debt is certainly interesting. At

the same time, when the country begins to accumulate debt, it usually lasts for a

while. According to Reinhart et al. (2012), once a public debt overhang has lasted

five years, it is likely to last 10 years or much more (unless the debt was caused by

a war). Thus the length of time countries have high debt overhang is a topic worth

studying which has barely been explored before.

In this chapter, I focus on checking correlations between high public debt and

high inflation while controlling other macroeconomic variables. There are other pa-

pers exploring the relation between inflation and public debt. For example, there

are papers checking the effect of inflation on the choice of government debt structure

1
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(Mandilaras and Levine (2001)) and there are also papers analyzing the impact of

large nominal debt overhang on the temptation to inflate (Aizenman and Marion

(2011)). However, very few of the previous studies have checked the impact of infla-

tion on the duration of high debt episodes, or vice versa. More specifically, in this

chapter, I focus on whether the existence of high inflation episodes interferes with

the duration of high debt episodes, when controlling for covariates of interest. At the

same time, I also check whether the mean and median time of high inflation episodes

have been prolonged or shorten when the countries have high debt simultaneously.

By doing these, this study offers some extensions to the existing empirical research

regarding the relation between inflation and public debt. The dependent variables of

interest are the time to occurrence of an event. They contain censored or truncated

observations. The estimates of sample median and mean from using standard least

square estimation will be biased. Thus I will use survival analysis.1

Section 2 will be the literature review. Section 3 introduces the source of data

and section 4 introduces survival analysis. Section 5 analyzes whether the existence

of high inflation affects the duration of high debt episodes. Section 6 analyzes the

survival experience of high inflation episodes. Section 7 provides a conclusion for the

chapter.

1.2 Literature Review

Different data and empirical methods were utilized to check the relation between

public debt and inflation. The results are still controversial.

1.2.1 Effects of inflation on public debt

Mandilaras and Levine (2001) check whether people’s expectations toward future in-

flation affect the amount of deflatable debt issued by the government. Their results

1The introduction regarding the methodology of survival analysis can be find in Appendix A.
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prove that higher expected inflation induces a change in debt management: govern-

ment issues less of inflation-sensitive securities in order to enhance its credibility2.

Their study also shows that the increasing debt to GDP ratios are associated with

issuance of less inflation-sensitive debt. Taking advantage of a broad new historical

dataset on public debt including data on 44 countries across 200 years, Reinhart and

Rogoff (2010) shows that there is no systematic relation between debt and inflation

for advanced economies. However, in emerging market economies, high public debt

coincides with a high inflation rate. Their study was done by simply checking the

inflation rate among different quantiles of average (median) debt ratio. Reinhart and

Sbrancia (2011) find the inflation rate, when combined with other regulations in the

financial sector, contributes to a substantial debt reduction in advanced economies

for the years between 1945 and 1970. However, other researchers find minor role of

inflation on public debt (Giannitsarou and Scott (2008); Abbas et al. (2013)).

1.2.2 Effects of public debt on inflation

Aizenman and Marion (2011) check whether it is normal for the US government to

print more money to pay off the debt, which would increase the inflation rate. They

conclude that “eroding the debt through inflation is not farfetched”. US can still

increase inflation for about 5 percent for several years to reduce the high debt ratio

since there are more foreign debt holders even though the current debt maturity

period is shorter.

Cox (1985) shows that increases in federal debt fuel inflation when debt is mea-

sured using the market value. However, further studies done by Hafer and Hein

(1988) shows that failure to capture the interest rate effects inherent in the market

value measure was the main reason why there is a positive relation between federal

2They define the price index, foreign currency and short term maturity debt as “non-sensitive”
debt since these types of debts can not be inflated away and investors enjoy returns that cannot be
eroded by surprise inflation.

3
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debt and inflation. When incorporating interest rates using the market series, the

increases in federal debt don’t cause higher rates of inflation.

While many studies are devoted to studying the factors that may affect the com-

positions of public debt, including both external debt and domestic debt, the factors

that may help explain the duration of debt were less closely studied. Compared to

the existing research, my paper is decidedly empirical. Instead of checking the genesis

of debt, I check whether the existence of high debt is associated with the duration

of high inflation and whether the existence of high inflation is correlated with the

duration of high debt among countries in the world using data from the year 1950 to

2010.

1.3 Data

The data for inflation is transformed from the Consumer Price Index (CPI) based on:

Inflationt = ln(CPIt)− ln(CPIt−1)

CPI is available yearly between the year 1949 and 2014 including 155 countries in

the world provided by International Financial Statistics (IFS). To be categorized as

experiencing a high inflation episode, the country needs to have an inflation rate

higher than a threshold value for at least four consecutive years. The threshold value

used in this chapter is 10 percent3. The selection of the threshold value is arbitrary.

One fact is high inflation rates differ across countries based on their different back-

grounds and experiences with inflation. A moderate inflation rate can range from 3

percent to 30 percent. That is, for countries with an inflation targeting policy which

sets the inflation rate around 2 percent, 4 percent would represent a high inflation

rate. Moreover, I define variable HIF to be a dummy variable that equals 1 when the

country is in the high inflation episode; otherwise it equals 0.

3The 20 percent threshold is also used as comparison.

4
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The other main variable of interest is the debt to GDP ratio. This data is from

historical public debt database (HPDD) which covers almost all International Mon-

etary Funds (IMF) countries (174 countries) and spans a long time period (Abbas

et al. (2011)). For a country to be classified as experiencing high debt episode, the

country should have a debt to GDP ratio higher than the threshold value for at least

4 consecutive years. In this chapter, we concentrate on 50 percent as the threshold

value.4 Again, the selection of threshold value is arbitrary. The 90 percent thresh-

old is used in the paper of Reinhart and Rogoff (2010) and is now viewed as the

benchmark. The use of the 90 percent threshold would reduce the sample, so most

of my results use the 50 percent threshold value. Furthermore, I define HDE to be

a dummy variable with its value equals 1 when the country is in high debt episode;

otherwise, it equals 0.

Table 1.1 shows the incidence of HDE and HIF across countries.5 Based on Table

1.1, we have 131 counts of HIF10 in total. Within these 131 HIF10, 32 of them

overlap with HDE90
6, that is, during the time when these 32 countries experienced

a high inflation episode, they also experienced a high debt episode, for at least one

year in common. 60 HIF10 overlap with an HDE50; within the sample, I have 25

counts of HIF20 in total and 14 of these HIF20 come across an HDE90. A total of

23 HIF20 overlaps with an HDE50.

The numbers in the column titled “Unc_HIF” are the total number of HDE re-

gardless of the existence of HIF. For example, we have 72 HDE90 and 144 HDE50

4Results for the 90 percent threshold are also shown in the Appendix

5Both HIF20 and HIF10 are called high inflation episode, the only difference is they use different
threshold values. HIF10 refers to the period when a country has inflation rate higher than 10 percent
for four consecutive years; For HIF20, we used 20 percent instead of 10 percent as the threshold
value. Similarly, the only difference between HDE90 and HDE50 is threshold value of 90 percent for
the former instead of 50 percent in the latter in the definition of high debt episode.

6 Apparently, when we combine value 12 from table 2, value 18 from table 3, value 2 from table
34, and the sum of 12, 18 and 2 is 32, confirming that fact that we have 32 episodes that the HIF10
and HDE90 happens at the same time.
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in our sample. Meanwhile, the numbers in the row titled “Unc_HDE” are the to-

tal number of HIF regardless of the existence of the HDE. For example, there are

25 HIF20 and 131 HIF10 in our sample regardless of the occurrence of high debt

episode.

Table 1.2, 1.3 and 1.4 show more detailed information on the sequence of the

HIF and HDE. Table 1.2 shows us the frequency when the high inflation episode

began before the high debt episode and they have at least one year in common. For

example, there are 12 times in our sample when HIF10 happened before the HDE90.

Table 1.3 show the frequency when the high debt episode happened and then was

followed by the high inflation episode, conditional on the fact that the two episodes

have at least one year in common. For example, there are 18 times when HDE90

began first and then was followed by HIF10. There are only 2 times when the HIF10

and HDE90 began at the same year, as shown by Table 1.4 column 3 and row 2.

Adding the above mentioned “12”, “18”, and “2” together, I get 32 which is the total

number of counts that HIF20 come across HDE90, regardless of the sequence.

When I analyze the survival experience of the high debt episode, I trim my data

set by discarding all observations for which HDE is missing. That is, I focus on high

debt episode in such a way that HDE is either 1 or 0. This does not guarantee that

we have data for inflation, so inflation may contain missing values for debt. Now

define the variable YHIF as a subset of HDE, those that have at least one year in

common with an HIF. To be more specific, Y HIF = HDE = 1 for every year of the

HDE if an HDE overlaps with an HIF for at least one year. Otherwise, Y HIF = 0

and HDE = 1 for the corresponding high debt episode. YHIF is constant within

any episode defined by HDE.

Similarly, when I check the survival experience of the high inflation episode, I trim

the data set by discarding all observation for which HIF is missing. The covariate

of interest YHDE is defined as a subset of HIF, those that have at least one year in

6
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common with an HDE. More specifically, Y HDE = HIF = 1 for every year of the

HIF if HIF overlaps with an HDE for at least one year; Otherwise, Y HDE = 0 and

HIF = 1 for the corresponding high inflation episode. YHDE is constant within any

episode defined by HIF.

In defining YHIF, as long as HDE contains at least one value for HIF, we ignore

any missing values for HIF in the same HDE, which implicitly assumes that those

missing value for HIF are all zero. By doing so, we may underestimate the number

of HDEs for which Y HIF = 1 since there exists the possibility that had we have

the data for inflation, YHIF may switch from Y HIF = 0 to Y HIF = 1. A similar

problem also shows up for YHDE.

There are 144 counts of HDE50 over 110 countries. More specifically, 81 countries

experienced HDE50 once, 24 countries experienced an HDE50 twice, and five coun-

tries experienced a high debt episode three times.7 Based on Table 1.5, among the

144 high debt episodes, 40 of them were censored at the end of sample year and 104

of them exited the HDE normally (also called failed); At the same time, among the

144 HDEs, 95 of them never come across high inflation episode. For the remaining 49

episodes which did overlap with a high inflation episode, 11 of them were censored.

There are 131 counts of HIF10 over 94 countries, 67 countries experienced an

HIF10 once, 20 countries experienced an HIF10 twice, 5 countries experienced an

HIF10 3 times,8 Nigeria experienced an HIF10 4 times and Iran experienced an

HIF10 5 times. Meanwhile, base on Table 1.6, among the 131 high inflation episodes,

60 of them overlaps with a high debt episode and among the 60 episodes, only one

of them is censored. For the remaining 71 episodes which never overlap with a high

debt episode, only two of them were censored. The longest duration of HIF10 is 29

years which happened in Colombia from the year 1971 to 1999.

7These five countries are UK, Grenada, Ireland, Mauritius and Netherlands.

8These five countries are Ghana, Jamaica, Kenya, Paraguay and Congo.
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1.4 Survival Analysis

Survival analysis is the study of the duration of the time to the occurrence of an

event, and how potential factors may impact it. It is frequently applied in clinical

trial and less frequently used in economics. The variable of interest is duration,

which is random and non-negative discrete or continuous. To begin with survival

analysis, I convert yearly data into the duration format.9 First, in Section 5, the

criterion variable is the duration of the high debt episode. I thus define the entering

event to be the year when HDE begins with t = 1; The corresponding exit event

(which is usually called “failure” in survival analysis) is the time when HDE ends.

So the exit event represents the fact that the country is getting out the high debt

episode, which is a good news. For example, Netherlands, one member of the OECD

countries, experienced three episodes of HDE50 shown in Figure 1.1 (a) . The first

episode began in 1950 which is the same year when my sample year starts and it

ended around 1969. This is an example of “left truncation” since we don’t know

when the HDE began. The second episode of HDE50 happened between 1982 and

2005. The third episode began around 2008 and it never ended until the end of my

sample in 2012. The third episode is counted as “right censoring”. Thus the three

HDE episodes happened within Netherlands contribute three lengths of records for

my data.10 For Netherlands, year 1950, 1982, 2008 are reset to be time t = 1 in my

sample. With the gap between 1950 and 1969 to be 20, the duration of first HDE is

20 years as shown in Figure 1.1 (b).

9Detailed introduction regarding the specific terminologies used in survival analysis is in Ap-
pendix A.

10In this chapter, I allow for multiple entries for the same countries, and I assume that any two
episodes are independent to each other.
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1.5 Survival Experience of High Debt Episode

In this section, we check potential factors that are associated with the duration of

HDEs with special attention to the existence of high inflation episodes (YHIF).11

1.5.1 Kaplan-Meier Statistic

In this part, we use the Kaplan-Meier statistics to compare the survival experience

across the covariate of interest at a qualitative level. The Kaplan-Meier estimate,

one of the most frequently used nonparametric estimates, calculates the survival

probability directly based on all the observations available, including both censored

and uncensored, while making no assumption about the functional form of the survival

function S(t). S(t) is the probability of surviving beyond time t where t refers to the

tth year countries were in the high debt episode. First of all, it ranks the order of each

observed survival time tj. Then it calculates the probability of surviving, conditional

on the fact that they have survived for the observed survival time tj. The survival

function for each survival time is the multiplication of all the conditional probabilities

of surviving that ever happened until the specific survival time. The Kaplan-Meier

statistics give the probability of remaining in the high debt episode at each observed

survival time tj. Mathematically, the Kaplan-Meier estimator at time t is given by

Ŝ(t) =
∏
j|tj≤t

(nj − dj
nj

)

with nj representing the number of countries that were experiencing a high debt

episode at time tj. In other words, nj is the number of countries at risk at year tj; dj

is the number of countries that were in the last year of a high debt episode at year tj

(the total number of exit at year tj).

11Results shown in the following sections only use HDE50 and HIF10 since by doing this, I can
keep relatively larger sample size.
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Table 1.7 shows the detailed output for the Kaplan-Meier estimate. The mini-

mum requirement for a high debt episode is 4 years. So the corresponding observed

minimum duration of HDE in the Table 1.7 is 4 years. According to Table 1.7, when

time equals 4, the number of countries that were experiencing a high debt episode is

144 (noted in the column titled “No. at Risk” in the Table 1.7). It represents 144

countries in our sample were still experiencing a high debt episode at time t = 4. At

the same time, the total number of countries that were in the last year of HDE is

4 (listed in the column “No. Exited”) with six episodes of high debt being censored

(listed in the column “Censored”) . Thus the estimated value of the survival function

at time 4 is Ŝ(4) = 1− 4
144 = 0.972. The remaining total number of episodes at risk

is 134 which is shown the next row when t = 5.

At t = 5, total number of high debt episodes that were in the last year is 6. Thus

the corresponding survival probability is (1 − 6
134). The estimated survival function

is the successive multiplication of the estimated conditional probabilities up to time

t, so Ŝ(5) = (1 − 6
134) ∗ 0.972 = 0.929. The probability of continuing to have high

debt at t = 5, is still as high as 92.9 percent.

The last line of Table 1.7 tells us that the observed maximum duration of an

HDE in our sample is 43 years, which happened in Egypt and Guyana. These two

countries have debt data available between the year 1970 and 2012. Throughout the

whole time when data are available, they were experiencing high debt and the data

was censored at year 2012. Thus, these two countries may actually have more than

43 years of high debt if more years of data were available.

The last three columns of Table 1.7 also provide information on the standard

error and confidence interval for the Kaplan-Meier estimates. The standard error

of Kaplan-Meier estimate is calculated based on the following equation (Greenwood

(1926) formula):

V̂ ar{Ŝ(t)} = Ŝ2(t)
∑
j|tj6t

dj
nj(nj − dj)

10
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However, the standard error used for the 95% confidence interval is the asymptotic

variance proposed by Kalbfleisch and Prentice (2002a)12:

ˆV ar{ln(−lnŜ(t))} = 1
(lnŜ(t))2

∑
tj≤t

dj
nj(nj − dj)

Table 1.8 presents side-by-side comparison of the Kaplan-Meier estimates between

Y HIF = 0 and Y HIF = 1. Apparently, the numbers in the column for Y HIF = 1

are larger than those in the column with Y HIF = 0. For example, when time equals

24, the estimate for Y HIF = 1 is 40.3 percent, while the value for Y HIF = 0 is

only 26.2 percent. Thus, HDEs overlapping with an HIF have a relatively higher

probability of remaining in the high debt episode compared to the other group.

Figure 1.2 visualizes results from Kaplan-Meier analysis.13 The four panels of

Figure 2 show the whole sample (Figure 1.2 (a)), and the samples split by YHIF

and OECD (Figure 1.2(b)-1.2 (d)). The numbers above the curves in the graphs are

the number of censored observations at the time point. All the curves have negative

slopes representing the fact that they have decreasing probabilities of surviving over

time, but the speeds of descent change for different time slots. For example, the

survival curve in Figure 1.2 (a) is flatter after it reaches 50 percent probability of

surviving, representing a slower speed of decreasing.

In Figure 1.2 (c), the red solid curve (Y HIF = 1 ) always lies above the blue

dashed line (Y HIF = 0 ) with a relatively bigger gap when the time is around 19.

Meanwhile, it takes less than 15 years for the blue dashed line (lower line) to reach the

50 percent survival probability, while it take more than 20 years for the red solid line

(upper line) to reach the same level. Thus, on average, the HDEs with Y HIF = 1

lasts longer than the other group.

12When using Greenwood’s formula, the 95% confidence interval generated would be outside the
range of S(t). The alternative idea from Kalbfleisch and Prentice (2002a) can solve this problem.

13When estimated survival curve doesn’t go to zero, the observations with the largest duration
were censored.

11



www.manaraa.com

Comparison between the OECD and non-OECD member is in Figure 1.2 (d). The

red solid line (OECD member) is on top of the blue dashed line (Non-OECD). Thus

OECD members have higher probability of remaining in the HDE once they enter

into the high debt episode compared to non-OECD members, which also implies

the average duration of HDE for OECD members is longer than the non-OECD

countries. However, since the two lines entangle with each other after a certain some

point, formal statistical tests are needed to verify the above statement.

Furthermore, when we categorize the countries into four different groups as shown

in Figure 1.2 (b), the lines cross with each other. The four groups are

1) OECD = 1 & Y HIF = 1

2) OECD = 1 & Y HIF = 0

3) OECD = 0 & Y HIF = 1

4) OECD = 0 & Y HIF = 0.

The group which contains non-OECD and Y HIF = 0 has the lowest probability of

surviving compared to all the other groups.

1.5.2 Median and Mean Survival Time

The median survival time is the minimum time at which 50 percent of the subjects

are expected to survive. That is:

t̂50 = min{ti|Ŝ(ti) 6 0.5}

Ŝ(ti) was used in place of S(t), representing the fact that Kaplan-Meier estimate is

utilized to get an estimate of the median survival time t̂50.

The mean survival time µT is defined as following:

µT =
ˆ tmax

0
Ŝ(t)dt

where tmax represents the maximum observed survival time.

12



www.manaraa.com

Based on Table 1.9, the estimated median survival time for HDE50 is 18 years

when we consider all the countries as one group. The median survival time forHDE50

with Y HIF = 0 is 15 years and 22 years for HDEs with Y HIF = 1 while the median

survival time is 17 for non-OECD members and 20 for OECD members.

According to Table 1.10, the restricted mean for the group without HIF is 18.504

and 23.18 for the other group. Similarly, the restricted mean survival time14 for OECD

members is 21.902 years and 19.03 years for non-OECD members. This relative long

average duration of public debt ratio is consistent with the results from Reinhart

et al. (2012) that “Once a public debt overhang has lasted five years, it is likely to

last 10 years or much more”. In their paper, their average duration of debt overhang

episodes was 23 years in the advanced economies using the data available as early as

1800.

1.5.3 Comparison of Survival Functions

In this part, we test whether the observed differences in Figure 1.2 are statistically

significant. In other words, we check the equality of survivor functions across two

groups. Several nonparametric statistical tests can be utilized. We will focus on the

results from the Log-Rank test and the Wilcoxon test.

Log-Rank Test The Log-rank test is one of the tests that allow us to compare the

overall equality of the two survival functions, instead of a specific time point.15 Gener-

ally speaking the test is done by comparing the expected versus the observed number

14Since some of the observation are right censored, the restricted mean will underestimate the
true mean, thus I also attach the result of extended mean. The extended mean is computed by
extending the Kaplan-Meier Product limit survivor curve to zero by using an exponentially fit curve
and computing the area under the entire curve. Please refer to Page 121 Mario Cleves and Marchenko
(2016) for detailed explanation.

15For an explanation, see Appendix C.

13



www.manaraa.com

of exits for each group and then combining these comparisons over all observed exit

times.

Upper part of Table 1.11 lists the results of the test for the survival experience

across the two groups: HDEs ovlapping with and without an HIF. The null hypoth-

esis is: h1(t|Y HIF = 1) = h2(t|Y HIF = 0) which assumes the hazard functions

for the two groups are the same16. The column for "Event Observed" refers to the

number of failures observed. For countries without an HIF overlap, there are 66

observed exits and 38 exits observed for countries with an HIF. The “Events Ex-

pected” refers to the total number of events that would be observed if the two groups

share the same survival function17. Based on upper part of Table 1.11, the difference

between the events observed and events expected is large enough to produce a sig-

nificant p-value=0.054 for the χ2 test with one degree of freedom, thus rejecting the

null hypothesis within 90 percent confidence interval. This result confirms with the

graphical view from Kaplan-Meier estimate and the survivor experiences are different

for HDEs with Y HIF = 0 and Y HIF = 1.

Lower part of Table 1.11 shows the log-rank test result between the OECD and

non-OECD countries. The p-value is 0.2958 which is not statistically significant.

The difference between the number of expected events and events observed are not

big enough to give us a statistically significant result which in turn tells us that the

survival experience is not different between OECD and non-OECD countries.

Wilcoxon test In this section, we test the equality of survivor function using the

Wilcoxon test. A detailed discussion regarding the difference between the Wilcoxon

test and the Log-Rank test can be seen in Appendix C. Generally speaking, the two

ways of test are similar to each other. The only difference is they put different weights

16See Appendix A.1 for a definition and discussion of the hazard function, and its relationship to
the survival function.

17Based on Equation C.1 in Appendix C .
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when forming an overall test statistic. The Log-rank test emphasizes the differences

between functions at larger values of time while Wilcoxon test puts more weight on

smaller values of time. The results for the Wilcoxon test are shown in Table 1.12. The

p-value for the chi-square test equals 0.018. The difference between the HDEs with

and without an HIF is statistically significant within 95 percent confidence interval.

Results from both of the Wilcoxon test and the Log-Rank test are consistent with

each other. When we check the results for OECD and non-OECD members, the p-

value is 0.233. Thus we fail to reject the null hypothesis and the survival experience

is similar whether or not the country is OECD member.

1.5.4 The Nelson-Aalen estimate

Nelson (1972) and Aalen (1978) use a different nonparametric method to reveal the

survival experience of the subject of interest. Instead of estimating the survival

function directly, they estimate the cumulative hazards function H(t) which is the

total amount of risks that have been accumulated up to time t.18 Theoretically, the

H(t) is convertible with S(t): H(t) = −ln{S(t)}.19 The Nelson-Aalen estimator of

H(t) can be retrieved by using the following formula:

Ĥ(t) =
∑
j|tj6t

dj
nj

where nj is the number of countries at risk at time tj, dj is the number of exits at time

tj. Intuitively, the Nelson-Aalen estimates the hazard at each distinct time of exit tj

as the ratio of the number of exits dj that occurred at time tj to the total number of

countries exposed to risk nj. The cumulative hazard at time tj is the sum of all the

18Please refer to Equation A.1 in appendix A for more detailed explanation.

19Generally speaking, the survival functions from Nelson-Aalen estimates are always greater
than or equal to the Kaplan-Meier estimator. By using the Taylor series expansion, we can see that
dj

nj
≤ −ln(1− dj

nj
). However if the size of the risk sets nj relative to the number of events dj is larger,

the Nelson-Aalen and the Kaplan-Meier estimators of the survival function will be similar to each
other.

15



www.manaraa.com

hazards up to time tj. For example, when t = 4, the total number of countries at risk

is 144 shown in the column named “Beg. Total” in the Table 1.13. Four countries

are in the last year of the HDE50, shown in the column titled “Exit”. Thus the

cumulative hazard at time t = 4 is Ĥ(4) = 4
141 ≈ 0.028. When time t = 5, the total

number of countries at risk is 134 (144-4-6=134). The reduction of observation from

time 4 to time 5 comes from two different parts: one is from the exiting (we observe

four episodes exited HDE), the other part is from censoring (the number of episodes

censored at time t = 4 is 6 shown in the column titled “Censored”). Similarly, the

h(t|t = 5) = 6
134 with 6 representing 6 observations were in the last year of HDE when

t = 5. Thus the Nelson-Aalen cumulative hazard estimator at this time point equals

to 6
134 + 0.028 = 0.073. The standard error is also shown in the column “Std. Error”

of Table 1.13 and it is estimated is based on V̂ ar{Ĥ(t)} = ∑
j|tj6t

dj
n2
j
.

Figure 1.3 shows the graphical results of the Nelson-Aalen estimates. As before,

there are 4 panels. As the time passes, the probability of exiting the high debt episodes

increases. However, the speeds of exiting are different among different country groups.

Figure 1.3 (c) shows the comparison between the country groups with Y HIF = 1

and Y HIF = 0 -the blue dashed line (countries without an HIF) lays above the red

one (countries with an HIF). So countries coming across an HIF, on average, have

longer durations of HDE than the other group. This result is consistent with the

result from Kaplan-Meier estimate.

The comparison between OECD and non-OECD members is in Figure 1.3 (d).

The two lines which represent two different country groups are closely attached to

each other at the beginning of analysis time and then separate with red solid line

laying below the blue dashed line (Non-OECD member). When time is around 26

years, the two lines attach to each other again. The later part of the red solid line

(OECD members) may not be accurate since the number of observations dropped

quickly and only a few observation left.
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1.5.5 Discussion

In this section, we used the Kaplan-Meier estimate and Nelson-Aalen estimate to

check whether the existence of a high inflation episode is associated with the duration

of high debt episode. In general, the existence of a high inflation episode coincides

with longer duration of high debt. Meanwhile, whether the country is a member

OECD does not appear to be important to the duration of HDEs. One possible

channel to explain these results is that government prints new money, which creates

high inflation, to pay off the debt burden. Then the country remains an HDE for

longer period and will exit when they default or there is an economic boom.

1.6 Survival Experience for High Inflation Episode

1.6.1 Incidence

In this section, I turn things around and check whether the existence of a high debt

overlap (YHDE=1 ) leads to a longer span of a high inflation episode (HIF) and

whether the survival experience is different between OECD and non-OECD members.

The methods used for analysis are the same as the previous section with the dependent

variable now being the duration of an HIF.

1.6.2 Kaplan-Meier Analysis

The results in Figure 1.4 provide the results of the Kaplan-Meier analysis. The

comparisons between groups Y HDE50 = 1 and Y HDE50 = 0 show that red solid

line (Y HDE50 = 1) lays above the blue dashed line (Y HDE50 = 0). The distances

between the two lines change over time and resemble the shape of an oval. A detailed

examination reveals that it takes the group with high debt more than seven years to

reach the 50 percent probability of surviving while it takes less than five years for the

group without high debt to reach the same level. Thus the HIFs with Y HDE = 1 on
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average, have longer duration comparing to the other groups. On the other hand, the

comparison between OECD and non-OECD members tells a different story. The two

lines which represent two country groups entangle together which means that there

is not much difference in the survival probability between these two groups. Formal

statistical tests are needed to verify the conclusion.

Results from the Log-rank test are shown in Table 1.14.20 The test p-value is

0.0019. Thus the durations of HIF are different depending on whether the country

experience high debt. The existence of HDE50 interferes with the survival time of

HIF10. The lower panel of Table 1.14 provides test result for the survival experience

between OECD and non-OECD members: p-value for the Chi-square test is 0.917.

We failed to reject the null hypothesis and show that the survival experience is similar

between OECD and non-OECD members. The tests from the Wilcoxon test (Table

1.15) shows similar stories to the Log-rank test.

Mean and Median Survival Time According to Table 1.16, the estimated me-

dian survival time for HIF10 is 6 years for the whole sample. The estimated median

survival time for HIFs with HDE50 = 0 equals 5 years, and the median survival time

equals 8 years for the other group. Table 1.17 provides the mean survival times for

high inflation episodes. The average duration ofHIF10 for the group withHDE50 = 0

is 6.878 years and 9.763 years for the other group with Y HDE50 = 1.

Among the 103 episodes of defined high inflation, 14 of them happened within the

OECD countries and the other 86.4% of the observation happened within the non-

OECD countries. The median survival time is not much different between OECD and

non-OECD members, as shown in Table ??. The mean survival time for the OECD

countries is around 8.714 years while it is 8.629 for non-OECD members (Table 1.17).

These results are consistent with the Log-rank test and Wilcoxon test and we can

20Among the 124 episodes of HIF10, three of them were censored, thus were excluded in this
test.
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conclude that whether the country is a member of OECD or not makes no difference

in the duration of HIF10.

1.6.3 Nelson-Aalen Estimate

Figure 1.5 shows the graphical results of Nelson-Aalen estimates for HIF10. Firstly, I

group the observation by the value of YHDE. The blue dashed line (Y HDE = 0) lays

above the red solid line (Y HDE = 1) when t ≤ 21. The total number of observations

dropped quickly when t > 21, thus the comparison may not be accurate. Based on

figure 1.5a, the hazard rate of exiting the HIF faced by the countries without high

debt is higher compared to the other group. It takes the group within HDE less than

six years to have the cumulative hazard rate to exceed one while it takes the other

group more than 11 years to achieve the same level of cumulative hazard rate. Thus

Nelson-Aalen estimates also show that it is easier for the countries without high debt

to exit the high inflation episodes.

Figure 1.5b visualize Nelson-Aalen estimators forHIF10 by dividing the group into

OECD and non-OECD countries. The red dashed line (OECD countries) entangles

with the blue line (Non-OECD members) for most of analysis time. Thus it is hard by

itself to tell from Nelson-Aelon analysis whether OECD member have longer duration

of HIF10 comparing to the non-OECD members.

1.6.4 Discussion

In this section, we use nonparametric analysis to check about whether the existence of

high debt episode is associated with the duration of high inflation. My results indicate

that the existence of high debt is associated with longer duration of high inflation

episodes. This result is consistent with the result found above for the duration of

high-debt episodes.
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1.7 Conclusion

This chapter uses non-parametric survival analysis to examine the association between

high inflation episodes and high debt episodes. I focus on just two factors that may

have association with the duration of each kind of episode. To be more specific, I first

investigated the duration of the high debt episodes using the Kaplan-Meier estimator

and Nelson-Aelon estimator. In examine the estimated survival function (Kaplan-

Meier) and the estimated cumulative hazard function (Nelson-Aelon) for my whole

sample. Then, I divide the sample by two different groupings. The first grouping is

by whether or not the HDE had at least one year in common with a high inflation

episode. The second grouping is whether or not the episode was in a country that is

a member of the OECD. Then I check whether the median and mean survival times

of the HDE are different when we group by either criterion.

My results indicate, on average, the existence of high inflation episodes is corre-

lated with longer duration of high debt episodes. When the government faces high

debt, the most convenient way to pay it off is print money, which activity incurs

inflation. However, inflation will not solve the high debt problem ultimately. But it

temporarily releases the burden and make the country stay in high debt for longer

time. In the end, the government may default which will ruin the country’s reputation

in the international funds market or government can negotiate new ways to pay off

the debts gradually, or a fortuitous economic boom would help the countries get rid

the debt burden. But our data doesn’t include information about how the countries

exit high debt episodes. More research is necessary to address this question.

Secondly, the existence of high debt is associated with larger mean and median

survival time of high inflation episodes. During the years when the country have

continuous high inflation, the existence of high debt makes the high inflation more

sustainable since there is a necessary for the government to print money to pay off

the debt. And whether the country is the OECD member doesn’t matter for the high
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inflation episode. Other possible explanation of why it happens is relevant to expec-

tation. Knowing that the country has both high debt and high inflation, concerned

investors have an expectation on inflation. This expectation will eventually lead to

continuous increase in the price level in the real life even though the government

may not actually do that. Meanwhile, high debt level represents a bad shape of the

economic growth.

Table 1.1 Overlapping Episode

Unc_HIF HIF20 HIF10
Unc_HDE 25 131
HDE90 72 14 32
HDE50 144 23 60

Table 1.2 HIF First

HIF20 HIF10
HDE90 5 12
HDE50 6 19

Table 1.3 HDE First

HIF20 HIF10
HDE90 7 18
HDE50 14 36
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Table 1.4 Simultaneous

HIF20 HIF10
HDE90 2 2
HDE50 3 5

Table 1.5 Summary of Statistics for HDE50

Event/ Group YHIF=1 YHIF=0 Total
Exited 38 66 104

Censored 11 29 40
At Risk 49 95 144

Table 1.6 Summary of Statistics for HIF10

Event/ Group YHDE=1 YHDE=0 Total
Exited 59 69 128

Censored 1 2 3
At Risk 60 71 131
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Table 1.7 Kaplan-Meier Output for HDE50

Time No. at Risk No. Exited Censored Survivor Probability Standard Error [95% Conf. Int.]
4 144 4 6 0.972 0.014 0.928 0.990
5 134 6 3 0.929 0.022 0.872 0.961
6 125 7 0 0.877 0.028 0.809 0.922
7 118 4 1 0.847 0.031 0.775 0.898
8 113 5 0 0.810 0.034 0.733 0.866
9 108 11 0 0.727 0.038 0.644 0.794
10 97 6 0 0.682 0.040 0.596 0.754
11 91 3 2 0.660 0.041 0.573 0.733
12 86 2 1 0.644 0.041 0.557 0.719
13 83 6 0 0.598 0.043 0.509 0.675
14 77 3 0 0.574 0.043 0.486 0.653
15 74 4 2 0.543 0.043 0.455 0.624
16 68 1 0 0.535 0.043 0.447 0.616
17 67 1 1 0.527 0.044 0.439 0.608
18 65 5 2 0.487 0.044 0.399 0.569
20 58 5 0 0.445 0.044 0.358 0.528
21 53 2 1 0.428 0.044 0.342 0.512
22 50 6 1 0.377 0.043 0.293 0.461
23 43 2 1 0.359 0.043 0.276 0.443
24 40 5 1 0.314 0.042 0.234 0.397
25 34 3 1 0.287 0.041 0.209 0.369
26 30 0 2 0.287 0.041 0.209 0.369
27 28 1 0 0.276 0.041 0.199 0.359
28 27 0 1 0.276 0.041 0.199 0.359
29 26 3 0 0.244 0.040 0.170 0.326
31 23 3 3 0.213 0.039 0.142 0.293
32 17 0 1 0.213 0.039 0.142 0.293
33 16 3 2 0.173 0.038 0.106 0.253
34 11 1 0 0.157 0.038 0.092 0.238
35 10 1 1 0.141 0.037 0.079 0.222
36 8 0 1 0.141 0.037 0.079 0.222
37 7 1 1 0.121 0.037 0.061 0.203
38 5 0 1 0.121 0.037 0.061 0.203
40 4 0 1 0.121 0.037 0.061 0.203
41 3 0 1 0.121 0.037 0.061 0.203
43 2 0 2 0.121 0.037 0.061 0.203
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Table 1.8 KM Output for
HDE50 Comparison Between
YHIF

Time Survivor Probability
Y HIF = 0 Y HIF = 1

4 0.958 1.000
8 0.773 0.878
12 0.594 0.735
16 0.468 0.653
20 0.354 0.592
24 0.262 0.403
28 0.245 0.334
32 0.184 0.263
36 0.103 0.197
40 0.103 0.158

Table 1.9 The Median Survival Time for HDE50

Group By YHIF
YHIF No. of Subjects 50% Std. Err. 95% Conf. Interval

0 95 15 1.818 11 20
1 49 22 1.450 18 25

total 144 18 2.026 14 22

Group By OECD
OECD No. of Subjects 50% Std. Err. [95% Conf. Interval]

0 106 17 2.389 12 22
1 34 20 1.599 15 25

total 140 18 2.109 14 22
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Table 1.10 The Mean Survival Time For HDE50

Group By YHIF
YHIF No. Of Subjects Restricted Mean Std. Err. [95% Conf. Interval]

0 95 18.504 1.387 15.786 21.221
1 49 23.180 1.750 19.750 26.611

Total 144 20.200 1.101 18.041 22.359

YHIF No. Of Subjects Extended Mean
0 95 20.464
1 49 26.844

total 144 22.667

Group By OECD
OECD No. Of Subjects Restricted Mean Std. Err. [95% Conf. Interval]

0 106 19.030 1.191 16.695 21.364
1 34 21.902 2.196 17.599 26.206

Total 140 19.674 1.062 17.592 21.756

OECD No. of subjects extended mean
0 106 20.151
1 34 29.758

Total 140 21.253
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Table 1.11 Log Rank Test for Equality of
Survivor Functions

Group By YHIF
YHIF Events Observed Events Expected
0 66 56.59
1 38 47.41
Total 104 104

χ2(1)=3.72
Pr > χ2 = 0.054

Group by OECD
OECD Events Observed Events Expected
0 80 75.74
1 19 23.26
Total 99 99

χ2(1)=1.09
Pr > χ2 = 0.2958

Table 1.12 The Wilcoxon Test for Equality of Survivor
Functions

Group by YHIF
YHIF Events Observed Events Expected Sum of Ranks

0 66 56.59 1018
1 38 47.41 -1018

Total 104 104 0
χ2(1)=5.60

Pr > χ2 = 0.018

Group by OECD
OECD Events Observed Events Expected Sum of Ranks

0 80 75.74 416
1 19 23.26 -416

Total 99 99 0
χ2(1)=1.42

Pr > χ2 = 0.233
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Table 1.13 Nelson-Aalen Estimate for HDE50

Time Beg. Total Exit Censored Nelson-Aalen Cum. Haz. Std. Error [95% Conf. Int.]
4 144 4 6 0.028 0.014 0.010 0.074
5 134 6 3 0.073 0.023 0.039 0.135
6 125 7 0 0.129 0.031 0.080 0.207
7 118 4 1 0.163 0.036 0.106 0.249
8 113 5 0 0.207 0.041 0.141 0.304
9 108 11 0 0.309 0.051 0.223 0.427
10 97 6 0 0.370 0.057 0.274 0.501
11 91 3 2 0.403 0.060 0.301 0.540
12 86 2 1 0.427 0.062 0.321 0.568
13 83 6 0 0.499 0.069 0.381 0.654
14 77 3 0 0.538 0.072 0.413 0.700
15 74 4 2 0.592 0.077 0.458 0.765
16 68 1 0 0.607 0.079 0.471 0.782
17 67 1 1 0.622 0.080 0.483 0.800
18 65 5 2 0.699 0.087 0.547 0.892
20 58 5 0 0.785 0.095 0.619 0.996
21 53 2 1 0.822 0.099 0.650 1.041
22 50 6 1 0.942 0.110 0.749 1.186
23 43 2 1 0.989 0.115 0.787 1.243
24 40 5 1 1.114 0.128 0.889 1.396
25 34 3 1 1.202 0.138 0.960 1.505
26 30 0 2 1.202 0.138 0.960 1.505
27 28 1 0 1.238 0.142 0.988 1.551
28 27 0 1 1.238 0.142 0.988 1.551
29 26 3 0 1.353 0.157 1.078 1.699
31 23 3 3 1.484 0.174 1.179 1.868
32 17 0 1 1.484 0.174 1.179 1.868
33 16 3 2 1.671 0.205 1.314 2.126
34 11 1 0 1.762 0.224 1.373 2.262
35 10 1 1 1.862 0.246 1.438 2.412
36 8 0 1 1.862 0.246 1.438 2.412
37 7 1 1 2.005 0.284 1.519 2.647
38 5 0 1 2.005 0.284 1.519 2.647
40 4 0 1 2.005 0.284 1.519 2.647
41 3 0 1 2.005 0.284 1.519 2.647
43 2 0 2 2.005 0.284 1.519 2.647
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Table 1.14 Log-Rank Test for HIF10

Group by Y HDE50
Y HDE50 Events observed Events expected

0 69 53.94
1 59 74.06

Total 128 128
χ2(1) = 9.66

Pr > χ2 = 0.0019

Group by OECD
OECD Events observed Events expected

0 85 85.32
1 14 13.68

Total 99 99
χ2(1) = 0.01

Pr > χ2 = 0.917

Table 1.15 Wilcoxon Test for HIF10

Group by YHDE
Y HDE50 Events Observed Events expected Sum of Ranks

0 69 53.94 1495
1 59 74.06 -1495

Total 128 128 0
χ2(1) = 12.59

Pr > χ2 = 0.0004

Group by OECD
OECD Events Observed Events expected Sum of Ranks

0 85 85.32 -87
1 14 13.68 87

Total 99 99 0
χ2(1) = 0.21

Pr > χ2 = 0.649
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Table 1.16 The Median Survival Time for HIF10

Group by Y HDE50
Y HDE50 No. of Subjects 50% Std. Err. 95% Conf. Interval

0 71 5 0.216 5 6
1 60 8 0.952 6 10

Total 131 6 0.376 5 7

Group by OECD
OECD No. of Subjects 50% Std. Err. 95% Conf. Interval

0 89 6 0.458 6 7
1 14 5 1.247 4 12

Total 103 6 0.471 5 7

Table 1.17 The Mean Survival
Time for HIF10

Group by Y HDE50
HDE50 No. of Subjects Mean

0 71 6.878
1 60 9.763

total 131 8.213

Group by OECD
OECD No. of Subjects Mean

0 89 8.629
1 14 8.714

Total 103 8.641
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Chapter 2

High Debt and High Inflation: A

Semi-Parametric and Parametric Approach

2.1 Introduction

When it comes to questions regarding public debt, there are many papers analyzing

reasons that may lead to high debt within a country and what policies government

may enact to reduce the debt burden. These studies emphasize changes in the debt

from year to year. Or they analyze the impact one event or one policy has by com-

paring debt before and after the event or the application of regulations. For example,

in the paper “Growth in a time of debt”, Reinhart and Rogoff (2010), using yearly

data, find that there is no systematic relation between high debt levels and inflation

for advanced economies as a group. However, high public debt levels do coincide with

higher inflation in the developing economies. Inspired by their paper, an analysis of

the relation between public debt and inflation rate is approached from a different

angle. By utilizing survival analysis, we identify potential factors that may have as-

sociation with the duration of public debt. That is, instead of checking the yearly

change in the level of public debt ratio, we emphasize the number of consecutive years

countries have sustained a high debt level. Particularly, I focus on the association

between high inflation episodes and the duration of high debt episodes.

The recent accumulation of US government debt has raised concerns over the gov-

ernment’s financial sustainability and its impact on economic performance (Reinhart

and Rogoff (2010)). When governments experience financial crisis, they tend to print
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money to pay off the debt (Aizenman and Marion (2011)). This extra supply of

money erodes the real value of money and diminishes government’ s refinance ability

in the future (Mandilaras and Levine (2001)). If we ignore the causality between

public debt and high inflation, the existence of a high inflation episode should be

associated with longer duration of existing high debt episodes since the high inflation

makes the high debt level sustainable for more years without committing default. At

the same time, the existence of high debt episodes should be associated with longer

duration of existing high inflation episodes since as long as there is a high debt level,

the government tends to print more money as one way to reduce the real burden of

that debt.

In this chapter, I attempt an identification of high debt episodes to obtain insight

on how different macroeconomic conditions impinge upon the sustainability of gov-

ernment debt and consecutive years of high inflation. More specifically, I evaluate

whether countries experiencing high inflation during a high debt crisis will endure

longer period of high debt. I utilize both semi-parametric and parametric survival

analysis. Later, I reverse the implied causality and check factors that are associated

with the duration of high inflation episodes. This is an extension to my previous

work in Chapter 1 which uses non-parametric survival analysis to evaluate the sur-

vival experience of high debt episodes and high inflation episodes.

The conclusion for the analysis is that the magnitude and sign of the association

between high inflation episodes and high debt episodes depends on the value of the

GDP growth rate. The existence of high inflation episodes is associated with either

longer or shorter duration of high debt episode: it depends on the value of the GDP

growth rate. However, high GDP is associated with the longer high inflation episode.

Duration of the HDE is not related to whether the country is a member of OECD.

These results are consistent with each other in all the models used including the Cox

PH model, exponential distribution and Weibull distribution.
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In section 2.2, I describe the data; In section 2.3 and 2.4, the dependent variable

of interest is the duration of high debt episodes. In section 2.5, duration of high

inflation episodes is the dependent variable. Section 2.6 concludes this chapter.

2.2 Data

The main variable of interest is high government debt. High debt is defined relative

to GDP: letting D be the nominal value of public debt and Y be nominal GDP, if the

ratio D
Y
is above the threshold value of 50 percent, we say that the debt ratio is “high”.

Often we simply say that debt is “high”.1 Instead of checking yearly data, we focus

on episodes: a high debt episode (HDE) is defined to be at least four consecutive

years of a high debt ratio. Data on debt is derived from the historical public debt

database (HPDD) covering almost all IMF countries (174 countries) and spanning

several decades (Abbas et al. (2011)). The indicator variable HDE takes the value 1

when a country is in a high-debt episode, and 0 otherwise.

The other main variable of interest is high inflation. Inflation is considered high

when it is over 10 percent. A high-inflation episode (HIF) is four or more consecutive

years of high inflation. The data for inflation is derived from the Consumer Price

Index (CPI). International Financial Statistics (IFS) provides yearly data on CPI

covering 155 countries in the world since 1948. The indicator variable HIF takes the

value one when a country is in a high-inflation episode, and 0 otherwise.

The indicator variable Y HIF defines a subset of HDE. It equals 1 whenever the

country experiences HIF during any year that the country is in HDE. Even if HIF has

only 1 year in common with the HDE, YHIF will take the value one for the entire

corresponding HDE. Otherwise, Y HIF would take the value zero.

1We also use threshold value of 90 percent which reduces the sample size by a large amount. The
use of 50 percent is reasonable based on Hansen (2015): he found a threshold value of 44 percent
for the debt to GDP value in the US economy.
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Symmetrically, the indicator variable Y HDE defines a subset of HIF. It equals 1

for the corresponding HIF whenever the country comes across an HDE during any

year that the country is in HIF , even if HDE only has 1 year in common with the

HIF . Otherwise Y HDE = 0.

The dummy variable “OECD” equals 1 if the country is a member of the OECD;

Otherwise, it equals 0.

2.3 Semi-Parametric Analysis for High Debt Episodes

2.3.1 The Cox Proportional Hazards Model

In this section, we explore potential factors that are associated with the duration of

high debt episodes using the Cox proportional hazards model. In particular, we are

interested in its association with high inflation episodes. The dependent variable of

interest is the duration of HDE50 which contains information as to the number of

years it takes for each high debt episode to be terminated. In my data, the minimum

value of the dependent variable is 4 years since the minimum requirement for the

definition of HDE50 is 4 consecutive years.

Unlike the Kaplan-Meier analysis used in the previous chapter, which is useful

for comparing survival curves in discrete groups, the Cox proportional hazards model

allows us to analyze the effect from several covariates that can vary over time. In

this part, the Cox model can help determine if the existence of high inflation episodes

and other control variables of interest affect the hazard rate for an HDE. The hazard

rate h(t|xj, x−j) refers to the probability that a country will get out of the high debt

episode in the next instant in the tth year of the high debt episode, given the value

of covariate xj and all other control covariates x−j. Our main control variable is

YHIF, the indicator for an overlapping high-inflation episode. If we can demonstrate

that the hazard rates are different between the country groups with and without a

high inflation episode, we can infer that the existence of a high inflation episode is
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associated with the duration of the high debt episodes.

Based on Cox (1972), for a randomly picked HDE in the sample, the hazard rate

equals:

h(t|xj, x−j) = h0(t)exp(XB) (2.1)

where X is a matrix of the covariates and B is the coefficient vector to be estimated.

Equation 2.1 is expressed as the product of function h0(t) and exp(XB). h0(t) is the

so called baseline hazard function which is the hazard rate when all the covariates

equal zero (X = 0). We assume the baseline hazard function is a function of time

with unknown functional form and the only requirement is h0(t) ≥ 0. For the base

group (when X = 0), the probability of getting out of the high debt burden at time t

is ho(t), and we make no assumption about how the value of h0(t) changes over time2.

The functional form exp(XB) is chosen to insure that h(t|xj, x−j) > 0. By making

the above two assumptions, the probability of getting out of the high debt burden

h(t|xj, x−j) at the tth year of a high debt episode is proportional to the baseline

hazard.

The coefficient vector B is estimated by maximizing the log of the partial maxi-

mum likelihood function (noted as PL) with respect to each element of B. A more

detailed explanation as to how we obtain the PL function is provided in Appendix

D.2.

Our baseline results are shown in Table 2.1 using the exact marginal approxima-

tion to deal with ties.3 The numbers reported are the elements of B = (β1, β2, . . . βj).

2Compared to parametric regression model, this is actually one advantage of the semi-parametric
analysis. One main reason is the parametric analysis may provide incorrect β̂x if the assumption
about the baseline hazard is wrong. However, if we are able to make correct assumptions about the
functional form of h0(t), we can have better estimate of β̂x.

3In estimations of the Cox model, one has to decide how to handle ties. “Ties” refer to the
fact that in our sample, several countries exit the high debt episode within the same year of the
analysis time, making the exact time of exiting unclear. Here, I use the Exact Marginal calculation
for adjusting ties ( Kalbfleisch and Prentice (2002b) page 104, 130-133). There are different methods
for dealing with ties including Exact Marginal, Exact Partial, and the Breslow/Efron method; all
are based on different approximations used to settle ties. The Exact Marginal calculation provides
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It is customary, however, to focus on eβj because eβj is the relative hazard rate and

has a direct interpretation. Based on Table 2.1 Column (1), the probability for a

randomly picked country to exit a high debt episode at the tth year is:

h(t|Y HIF,OECD) = h0(t)exp(−0.594Y HIF − 0.437OECD)

For the dummy variable Y HIF , we have two groups of hazard rates:

h(t|Y HIF = 1, OECD) = h0(t)exp(−0.594− 0.437OECD)

h(t|Y HIF = 0, OECD) = h0(t)exp(−0.437OECD)

The relative hazard ratio between the two groups is equal to:

h(t|Y HIF=1,OECD)
h(t|Y HIF=0,OECD) = exp(−0.594)

= 0.552

Countries with a high inflation overlap in general only have 55.2 percent probability

of exiting the high debt episode compared to countries without an HIF overlap. The

coefficient for covariate “YHIF” is statistically significant within 99 percent confidence

interval. This result does not change in a big degree when we add more controls to

the regression, as shown in other columns of Table 2.1. This means that high debt

episodes last longer when they overlap with a high inflation episode.

The coefficient for covariate OECD is −0.437 in Column (1) of Table 2.1. The

hazard ratio of e−0.437 ≈ 0.646 shows the hazard rate is 35.4 percent lower if the

country is a member of OECD. The result is statistically significant within 90 per-

cent confidence interval. However, statistical significance is gone when we add other

control variables.

a better fit for the estimates but it is time consuming (Borucka (2014)). Exact marginal calculation
assumes those countries which exit the high debt episode at the same year may not exit at the same
time of the year. Our knowledge is limited by how precisely the data is measured. Appendix E
provides detailed explanation about the difference between different approximations used.
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GDP has been shown by many economists to have a significant association with

the debt ratio of country (Easterly (2001); Abbas et al. (2011)). When we add

ln(GDP) as one of the controls as shown in Column (2) of Table 2.1, the coefficient

is 0.117. This indicates with every one percent unit increase in GDP, the probability

of getting out of a high debt episode increases by exp0.117 ≈ 1.124 percent. However,

this coefficient is not statistically significant.

In Column (3) of Table 2.1, I add the growth rate of GDP4 (Noted as g.GDP)

as the alternative control instead of ln(GDP ). The coefficient for the GDP growth

rate is 3.312 and it is statistically significant within 99 percent confidence interval.

The comparison between ln(GDP ) and GDP growth rate provide some evidence

that what matters for the duration of high debt episode is not the absolute value of

GDP itself, but the growth rate of GDP. Hazard ratio for GDP growth rate equals

e3.312 = 27.440 showing that when the GDP growth rate increases by one unit, it

increases the probability of getting out of the high debt episode for the country in a

large degree (27 times) . This agrees with researches that GDP is the engine that

drives the country out of the burden of a debt trap.

Further investigation is done in Column (4) of Table 2.1, which adds an interaction

term between YHIF and the GDP growth rate. The coefficient for the GDP growth

rate turns out to have no statistical significance but the interaction term is statistically

significant within 99 percent confidence interval.

The hazard rate function for the regression in Column (4) can be written as:

h(t|g.GDP, Y HIF,OECD) = exp(β1Y HIF + β2OECD + β3g.GDP

+β4Y HIF ∗ g.GDP)

Take the log of the above equation, we have:

ln{h(t|g.GDP, Y HIF,OECD)} = β1Y HIF + β2OECD + β3g.GDP

+β4Y HIF ∗ g.GDP

4GDP Growth ratet=ln(GDP )t − ln(GDP )t−1
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The difference between the group with and without inflation can be shown in the

following expression (a is GDP growth rate):

ln(h|Y HIF = 1, g.GDP = a, OECD)− ln(h|Y HIF = 0, g.GDP = a, OECD)

= (β1 + β2OECD + β3a+ β4a)− (β2OECD + β3a)

= β1 + β4a

The estimated hazard ratio between the two groups with and without an high infla-

tion episode is eβ1+β4a whose value is changing depending on the value of a. When

the growth rate of GDP equals to 0.2, the hazard ratio is 1.670. When the coun-

try’s GDP growth rate equals 20 percent, the country with YHIF=1 has 67 percent

higher probability of getting out of the high debt episode compared to the group

with Y HIF = 0.5 However, when the GDP growth rate equals 2 percent, the hazard

ratio changes to 0.492, which means that the country with HIF has 51 precent lower

probability of getting out of the high debt episode compared with the group without

an HIF. Table 2.2 demonstrates that the effect of YHIF shown in the form of hazard

ratio is only positive at high rates of GDP growth. When the GDP growth rate

is around 2 percent, the existence of YHIF are shown to be associated with longer

duration of the HDE.

Column 3 and 4 of Table 2.2 show the 95 percent confidence interval of hazard

ratio calculated based on the following equation:

β̂1 + β̂4a± z1−α/2ŜE(β̂1 + β̂4a)

where

ŜE(β̂1 + β̂3a) =

 ˆV ar(β̂1) + a2 ˆV ar(β̂4)

+2a ˆCov(β̂1, β̂4)


0.5

52% is the mean of GDP growth rate.
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In our regression,
ˆV ar(β̂1) = 0.064
ˆV ar(β̂4) = 4.664

ˆCov(β̂1, β̂4) = −0.253
For example, the 95 percent confidence interval of the hazard ratio when the growth

rate of GDP equals 2.1 percent is (0.317, 0.764) with the estimated hazard rate to be

0.492. All the hazard rates within the within 95 percent confidence interval are less

than one. When GDP growth rate is around 12.6 percent, the hazard ratio between

YHIF=0 and YHIF=1 is approximately 1. So the 12.4 percent can be called the

marginal growth rate of GDP whose value impinge the relation between high debt

episodes and high inflation episodes.

Postestimation of the baseline cumulative hazard function Based on the

regression results in Table 2.2 Column (4), we can generate the baseline survival

function and the baseline cumulative hazard function over time. First, we examine

the estimated survival function. The blue dashed line in Figure ?? is the probability

of survival for the base group when all the covariates equal zero. There is a general

trend of decreasing probability of survival over time. However, there is a huge gap

between the two groups. The country group with Y HIF = 1 has a higher probability

of survival.
Ŝ1(t) = Ŝ

exp(β̂1)
0

= Ŝ0.427
0

where S(t) is the survival function, that is “the probability that a subject selected

at random will have probability of surviving longer time than t”. Then we examine

the estimated cumulative hazard function. The green dashed line in Figure2.1 (b)

depicts the cumulative baseline hazard function changing over the analysis time with

YHIF=0. It is generated based on the estimated value of B̂:

Ĥ0(t) =
∑
j:tj≤t

dj∑
j∈Rj exp(XjB̂)
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where dj represents the number of countries that were in the last year of a high debt

episode at the tj observed failure time.6 The blue solid line represents the cumulative

hazard for the country group with Y HIF = 1 and all the other covariates equal zero,

which is obtained by using the following equation:

Ĥ1(t) = Ĥ0(t) ∗ exp(β̂1)

which is based on the assumption that hazard rates are constant across the two

country group. When the GDP growth rate is equal to zero, the relative hazard rate

in between equals exp(β̂1) which is exp(−0.852) = 0.427. So,

Ĥ1(t) = Ĥ0(t) ∗ 0.427

The gaps existing between the dashed green and solid blue lines show that the exis-

tence of Y HIF = 1 does tell us a different story for the duration of the high debt

episode.

The Alternative Approximation to Deal With Ties Table 2.3 shows the es-

timated coefficients of the Cox-PH model utilizing the four different approximations

available dealing with ties. Ties, in the sample, refer to the fact that in the tj ob-

served time of failure, several countries were in the last year of high debt episode

simultaneously and we have no information delineating the exact order of countries

exiting the high debt episodes. And there are four different methods used to approx-

imate the actual scenario. For detailed information regarding the difference between

the four methods, please refer to Appendix E.

6When all the values of covariates equal zero, the estimator of H0(t) in the above equation is
the same as Nelson-Aalen estimator which is expressed as:

Ĥ(t) =
∑
j:tj≤t

dj
nj

where nj is total number of countries that were in the high debt episode, at the tj observed failure
time.
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Column (1) of Table 2.3 employs the Breslow approximation. Robust standard er-

ror is used to correct for the heteroskedasticity in the sample. Column (2) uses Efron’s

approximation. Column (3) use the exact-marginal calculation and the last column

depicts the conditional-partial calculation. Though different approximations show us

slight difference in the impact of the covariates, the overall results are consistent with

one another. The coefficient for Y HIF is around −0.8 and statistically significant

within 99 percent confidence interval. The coefficients for the GDP growth rate are

not statistically significant, but all the interaction terms are shown to be significant

within 99 percent confidence interval and its value is around 6.5 which implies that

the GDP growth rate has a positive effect in helping the country to exit the high debt

episode. Meanwhile, when the GDP growth rate is zero, the hazard ratio between

the country group with and without YHIF is around 44.9 percent.

More importantly, Table 2.4 shows the calculated marginal GDP growth rates for

each of the Cox PH models. The largest value is 0.135 and the smallest is 0.122 which

means that in the Cox model, the economy should maintain at least 12.2 percent GDP

growth rate so that the existence of an high inflation episode is associate with shorter

duration of high debt episodes.

In this section, we have shown that high inflation episodes are correlated with

perpetuated high-debt episodes while high real growth does the opposite. My research

does not check the causality and there are several channels through which GDP

growth and the duration of high debt episodes are related. First of all, nominal GDP

(Y ), is in the denominator of our latent dependent variable D
Y
. When Y increases,

the debt-to-GDP ratio decreases. One the other hand, public expenditure such as

medical care expense usually increase with Y which would lead to higher nominal

debt. This effect is contrary to the first effect. Based on the results, real growth is

associated with a shorter duration of HDE. Thus my result provides evidence that

GDP growth rate can drive the economy out of the debt burden quicker.
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At the same time, the association between YHIF and duration of high debt

episodes can be explained by the sovereignty held by the government to print money.

There are arguments regarding whether the government can escape high debt via

high inflation. In the case of the US, higher inflation can help erode the real value of

debt since most of the debt is in fixed nominal terms and held by people who reside

outside of the country. Thus based on the current results, we can say, high inflation,

if not strong enough to help the country get out of the high debt burden, seems to

allow countries to remain in high debt episodes longer, without having debt default,

since the countries are cushioned due to the eroded value of existing debt.

2.3.2 Robustness Check for the Proportional Hazards Model

In this section, I perform robustness checks for the Cox PH model. In this model, the

basic assumption is the hazard rates across covariates are proportional to each other.

In this part, I will use different methods to check the validity of this assumption.

The first method is the so called graphical comparison. Based on the PH assump-

tion h(t|xj, x−j) = h0(t)exp(XB), we can derive that S(t|xj, x−j) = S0(t)exp(XB) 7.

Additional manipulation of the survival function allows us to determine an equal dis-

tance between −ln[−ln{S(t|xj, x−j)}] and −ln[−ln{S0(t)}] for xj which is a dummy

variable:

−ln[−ln{S(t)}] = −ln[−ln{S0(t)}]−XB

If the proportional-hazards assumption holds, the plotted curves of −ln[−ln{Ŝ(t)}]

versus ln(t) should be parallel between the two values of the dichotomous covariate

xj with an equal distant of βj. According to Figure 2.2, the lower dashed blue line

represents the country group with Y HIF = 0 while the upper red solid line represents

7Since h(t|xj) = h0(t)exp(xjβx), H(t|xj) =
´ t

0 h(t|xj)dt =
´ t

0 h0(t)exp(xjβj)dt =
exp(xjβj)

´ t
0 h0(t)dt = exp(xjβj)H0(t). Also since S(t) = e−H(t), S(t) = e−exp(xjβj)H0(t) =

e−H0(t)exp(xjβj) = S0(t)exp(xjβj)

S(t) = e−H(t) = e−H0(t)exp(β′Xi) = {e−H0(t)}exp(β′Xi) = S0(t)exp(β′Xi)
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the country group with Y HIF = 1 while controlling for GDP growth rate. These two

lines shown are considered parallel which suggests that the PH assumption holds..

Scaled Schoenfeld Residual In the second method, I will utilize the scaled

Schoenfeld residuals.8 Based on Grambsch and Therneau (1994), the effect of the

covariate on the surviving experience of subjects can be separated into two parts, the

first is constant over time (a) and the second part can be expressed as a function of

time gj(t) with the constant coefficient b.

βj(t) = a+ bgj(t)

with gj(t) being a function of time t. Based on the PH assumption, βj(t) should be

constant over time. Thus, the PH assumption holds only if b = 0 .

Additionally, Grambsch and Therneau (1994) proved the scaled Schoenfeld resid-

ual r̂∗ has the following property:

E(r∗j (t)) ∼= bgj(t) (2.2)

Thus, the scaled Schoenfeld residuals retrieved from the original Cox model can be

used to check whether the PH assumption holds given different specifications of the

function gj(t). We follow the literature and choose to include gj(t) = t , gj(t) = ln(t),

gj(t) = ŜKM(t) and gj(t) = rank(t). ŜKM(t) is the value of estimated Kaplan Meier

statistic corresponding to each observed time of failure. rank(t) is a new series of

numbers which is generated by placing the observed failure time t and assigning the

order of time t as the new number. If the PH assumption is correct, the plot should

have a zero slope fitted line. In other words, there should be no discernible pattern

in the graph.

The scatterplots of the scaled Schoenfled residuals in Figure 2.3 are quite support-

ive of the results in the score test. Figure 2.3 shows the plots for the scaled Schoenfled

8The detailed description necessary to retrieve Schoenfeld residual mathematically can be found
in Appendix F.
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residuals for the dummy variable YHIF versus gj(t). We notice two bands of points in

each of the four plots. The upper band shows subjects which have YHIF=1 and the

lower band corresponds to the subject with YHIF=0. There is no discernible pattern

in the plots and the dots appear to be “randomly” scattered about zero. Accord-

ingly the LOWESS smooth (locally weighted scatter plot smoothing) has a roughly

zero slope. In summary, all four plots show no evidence of violating the proportional

hazard assumption.

The third method is similar to the second one. The difference is it utilized a

statistical test since visual comparison used may not be persuasive enough. Based

on Equation (2.2), Grambsch and Therneau (1994) derived a general least square

estimator of coefficients b̂ and we use the score test to determine if HO : b = 0.

Rejection of the null hypothesis indicates a deviation from the proportional hazard

assumption. The results of the score test with the different specifications of gu(t) are

shown in Table 2.5. The results indicate there is no evidence of the hazards being

non-proportional in all the covariates under control. All the p− values are shown to

be statistically insignificant including the global test in the bottom row. Thus, we

fail to reject the null hypothesis and our assumption the shape of hazard is the same

across covariates is supported.

Overall Goodness of Fit The Cox-Snell residual can be utilized to check the

overall goodness of fit of the model. If the PH assumption holds, CSi should be

distributed as a censored sample from a standard exponential distribution whose

hazard function equals to one and the corresponding cumulative distribution function

is a straight 45 degree line passing through the origin. If the Cox PH model fits well,

a plot of the cumulative hazard based on the Cox-Snell residuals should be a line

with 45-degree slope passing through the origin.

The test result is shown in Figure 2.4. The cumulative hazard of the Cox-Snell
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residuals moves around the 45 degree line. Noted in Mario Cleves and Marchenko

(2016), “...even if we have a well-fitting Cox model, some variability about the 45

degree line is still expected...”. The blue line fluctuates closely around the red line, so

the model appears to be working as predicted.

2.4 Parametric Analysis for High Debt Episodes

In this section, I use parametric analysis to check the survival experience of high debt

episodes. There are many different models among parametric analysis which differ

from each other by the assumptions used regarding the distribution of the baseline

hazard function. By applying an assumption that the shape of the baseline hazard

to be monotonic over time, we use the exponential and Weibull model to analyze

potential factors affecting the duration of high debt. Meanwhile, the exponential

and Weibull model are the only two models having both proportional hazard and

“accelerated failure time” (AFT) interpretation. However, it does not matter whether

the results are shown in relative hazard ratio or AFT metrics, they are the same

model. Even though there are differences in the coefficients estimated, they are

transformable to each other.9 As noted by David Hosmer Jr. (2008), the parametric

accelerated failure time model gives an analysis of censored survival time data that

is easy to interpret.

Even though their results can be directly compared with the Cox model, the

method used parametric analysis to exploit information in the data is different from

the Cox model. First of all, the Cox model compares survival experience of the coun-

tries in the high debt episode only during times when there were countries exiting

the high debt episode, while parametric analysis do not simply rely on such compar-

isons. Instead it incorporates all information available each year whenever the data

9 The coefficients estimates are different from each other. For the Weibull model, we have
βAFT = −βP H

λ .
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are available. Secondly, the Cox model (also called semi-parametric analysis) does

not specify the complete baseline hazard function and we only estimate the relative

hazard rate between different values of covariates while parametric model can specify

the baseline hazard function10.

Based on Equation (2.1), the Cox PH model can be written as:

h(t|xj, x−j) = h0(t)exp(XB) (2.3)

with h0(t) being left unspecified. In the parametric analysis, we make assumptions

regarding the functional form of h0(t).

If we assume h0(t) = exp(a) for some constant value of a, Equation (2.3) is called

the exponential model with unknown parameters (a,B) to be estimated.

If we assume h0(t) = λtλ−1exp(b) for some constant values of λ and b, Equation

(2.3) is called the Weibull model with unknown parameters (λ, b, B) to be estimated.

We can compare the coefficient estimated from the exponential model and Weibull

model with the Cox model to ascertain which of the models is a better fit. A better

model should produce coefficients similar to the coefficients in the Cox model. The

direct comparability with the Cox model is also one of the most appealing features

of the Weibull and exponential models11.

Another important feature of the parametric model is its accelerated failure time

(AFT) interpretation. For a time-to-event variable t, which is the duration of the

high debt episode in this part, an accelerated failure time model has the following

expression:

T = exp(XB)× ε (2.4)

The above equation characterizes the relation between t and the covariate vector X.

Since time t must be positive, we assume the error component ε to be positive at all

10Please refer to Appendix D.2 for detailed explanation regarding mathematical derivation of
coefficients.

11Mario Cleves and Marchenko (2016) page 236
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times. Making mathematical manipulation to Equation (2.4), we have:

ln(T ) = XB + ln(ε) (2.5)

The assumption regarding the distribution of ε in Equation (2.5) determines whether

the model is the exponential model or Weibull model. If ε follows the exponential

distribution, Equation (2.5) is called the exponential regression model. When the

ln(ε) follows the Weibull distribution with two parameters (β0, λ) where λ is called

the shape parameter., the model is called the Weibull regression model12.

2.4.1 Exponential Model

Under the exponential model specification, the baseline hazard function is constant

over time. The corresponding survival function from the AFT metric for the expo-

nential model is

S(t,X,B) = exp(− T

expXB
) (2.6)

where B is the vector of coefficients estimated from the model in the form of AFT.

By setting S(t,X,B) = 0.5, we can obtain the median survival time for the high debt

episode:

T50(X,B) = −exp(XB)× ln(0.5)

Thus, the ratio of the median survival time for a dichotomous covariate x1 is:

TimeRatio = T50(x1 = 1, B)
T50(x1 = 0, B) = −exp(β1 ∗ 1)exp(β−1x−1)ln(0.5)

−exp(β1 ∗ 0)exp(β−1x−1)ln(0.5) = eβ1

with β1 being the coefficient for covariate x1 and β−1 being coefficients for all other

control variables.

12David Hosmer Jr. (2008) page 245.
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The hazard function13 corresponding to Equation (2.6) is14:

h(T,X,B) = e−(XB)

and the hazard ratio for the dichotomous covariate x1 is:

HR = e−β1

Table 2.6 and 2.7 demonstrate the regression results for the exponential model in two

different forms. Table 2.6 shows the results in the form of relative hazards rate and

Table 2.7 shows the results in the form of accelerated failure time. For example, the

hazard ratio e−β1 for the covariate Y HIF is equal to 0.663 based on results shown

in Table 2.6 Column (1). It is statistically significant within a 95 percent confidence

interval. It tells us that the country group with YHIF faces a lower probability of

ending the high debt episode. This is the case when I only control two variables of

interest.

Similarly, based on Table 2.7 Column (1), the median duration of a high debt

episode for non-OECD member countries with YHIF equals:

T̂50(Y HIF = 1, OECD = 0) = −e2.893+0.411 ∗ ln(0.5)

The median duration of the high debt episode for a non-OECD member without

YHIF equals to:

T̂50(Y HIF = 0, OECD = 0) = −e2.893 ∗ ln(0.5)

Thus the estimated time ratio between the two categories of countries is:

T̂R(Y HIF = 1
Y HIF = 0) = e0.411 = 1.508

13Noted that coefficient estimated based on the AFT and PH metrics are different from each
other. In exponential model, βAFT = −βPH , In this part, all the B refers to coefficients estimated
based on AFT metrics. Based on Equation 2.3, the hazard ratio for a dichotomous covariate should
be HR = eβP H .

14exp(a) is counted as constant part of estimated coefficients.
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The median duration of high debt episode among countries groups with Y HIF = 1 is

estimated to be 1.508 times the median duration of high debt episode among countries

with Y HIF = 0. The estimated 95 percent confidence interval is :

(e−0.0088 ≤ TR ≤ e0.830) = (0.991 ≤ TR ≤ 2.294)

The median duration of HDE with YHIF=1 is estimated to be between 0.991 and

2.294 times of those episodes without HIF within 95 percent confidence interval.

Similarly, the median duration of HDE for OECD members with HIF equals to 28.06.

The estimated time ratio for the dichotomous covariate OECD equals:

T̂R(OECD = 1
OECD = 0) = 1.49

The survival time for OECD members is about 1.49 times that of the non-OECD

members. However, the regression results are not statistically significant. Also shown

in Table 2.6 Column (1), the hazard ratio between OECD and non-OECD members

is 0.672 with no statistical significance. Other columns in Table 2.6 and 2.7 show us

results of the regression model when we add controls for different forms of GDP. Even

when we add controls, the results are consistent with each other. Column (2) adds

the logarithm of yearly GDP for the country, Column (3) adds the annual growth

rate of GDP. The last column of the Table includes the annual growth rate of GDP

and its interaction with the dummy variable YHIF. All the regressions in Table 2.6

show that YHIF has a multiplicative effect on the duration of the high debt episode.

The coefficient for YHIF represented in the last column of Table 2.7 equals 0.563

and it is statistically significant within 95 percent confidence interval; The coefficient

for the interaction term is -3.929 and it is statistically significant within 95 percent

confidence interval demonstrating the impact of YHIF changes depending on the

value of the annual growth rate of GDP. When GDP growth rate equals to 0.019

(mean value of GDP growth rate), the estimated time ratio for the country group
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with HIF versus country groups without HIF is:

T̂R(Y HIF = 1
Y HIF = 0 |g.GDP = 0.019, OECD) = e0.563−3.929∗0.019 = 1.630

Thus, the regression results show what really matters is the growth rate of GDP

instead of the absolute value of GDP. Also, based on the above equation, when

the GDP growth rate equals 13.6 percent, the time ratio for the dummy variable

YHIF=1. When the GDP growth rate is higher than the marginal value, the time

ratio for Y HIF is smaller than 1; otherwise, it is larger than 1. This confirms with

the previous results that with higher GDP growth rate, YHIF is associated with the

shorter duration of HDEs; with relative longer GDP growth rate, YHIF is associated

with the longer duration of HDEs.

The estimated time ratio comparing the duration which differs by one percentage

point in GDP growth rate is

T̂R(g.GDP + 0.01
g.GDP

|OECD, Y HIF = 0) = e−1.608∗0.01 = 0.984

T̂R( ln(GDP ) + 0.01
ln(GDP ) |OECD, Y HIF = 1) = e−1.608∗0.01−3.929∗0.01 = 0.946

Thus, the duration of high debt episode for subjects with one percentage point higher

GDP growth rate is shorter than those episodes with a smaller GDP growth rate.

When we make comparisons between the results from the Cox model and the ex-

ponential model, we find inconsistencies between coefficients estimated. For example,

the hazard ratio for YHIF is 0.552 in the Cox model in Table 2.1 Column 1 while it is

0.663 in the exponential model based on Table 2.6 Column 1. These inconsistencies

may suggest a constant baseline hazard assumption is wrong. We, therefore, choose

another specification that allows h0(t) to change over time.

2.4.2 Weibull Model

The Weibull model assumes the baseline function to be:

h0(t) = λtλ−1exp(b)
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with λ being the so called ancillary shape parameter. This is also estimated from

the model. If λ = 1, then the hazard function is constant, the Weibull model is the

same as the exponential model. When λ > 1, the Weibull hazard is monotonically

increasing; when λ < 1, the Weibull hazard model is monotonically decreasing.15 The

hazard rate in the Weibull model changes over time and can be written as16:

h(t) = h0(t)exp(xjβx)

= λtλ−1exp(β0 + xjβx)

= λtλ−1exp(XB)

In the following part, I estimate the Weibull model in both the PH metric and the

AFT metric.

Consider the the AFT metric. adjusting Equation 2.4, we have

ε = exp(−XB)× T (2.8)

and e−XB is called the acceleration parameter since its value determines whether the

covariates speed up or slow down the duration of the episode. Meanwhile, we can

retrieve the median survival time for the subjects by equating its survival function to

0.5, so that we can have:

T50(x, β, λ) = [−ln(0.5)] 1
λ eβ0+xjβx

Then for the dummy variable Y HIF, the time ratio at the median survival time is:

T̂RY HIF = t50(Y HIF = 1, β, λ)
t50(Y HIF = 0, β, λ) = eβY HIF

15exp(b) is the scale parameter and exp(b) = exp(β0) with β0 being the constant part of the
coefficient estimated from the model

16The hazard ratio for the dichotomous covariate x1 is:

HR = eβ1

with β1 to be the coefficient estimated from the PH metric. The survival function corresponding to
the proportional hazard assumption is:

S(t|xj) = exp{−exp(β0 + xjβ)tλ} (2.7)
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Results from the Weibull distribution are summarized in Tables 2.8 and 2.9. Ta-

ble 2.8 illustrates hazard rates estimated from proportional hazard and Table 2.9

delineates the coefficients estimated from the AFT metric.

Table 2.8 and 2.9 both show four different regressions to analyze whether the

existence of a high inflation episode has an association with the duration of a high

debt episode. The hazard ratio for Y HIF shown in Table 2.8 tells us that it indeed

matters. The average magnitude of hazards rate is around 0.5 and it is statistically

significant within 99 percent confidence interval. For those countries experiencing a

high inflation episode during the time when they have a high debt episode, they face

a lower risk of exiting a high debt episode and have a longer duration of high debt

episode. In other words, it is harder for the countries to eliminate the high debt.

This is the case when we only control only two variables of interest including YHIF

and OECD.

In the last column of Table 2.9, we control for YHIF, OECD and GDP growth

rate, the time ratio for the median survival time for the dummy variable YHIF when

GDP growth rate equals 0.019 is:

T̂RY HIF = e0.451−2.075∗0.019 = 1.509

The country group with HIF has 1.509 times longer survivor time compared to the

country group without HIF. Meanwhile, the marginal GDP growth rate in this model

equals 21.73 percent. If GDP growth rate is higher than 21.73 percent, those duration

of HDEs with YHIF=1 is shorter while the opposite is also true.

For the same model, the hazard ratio for covariate OECD is 0.660, and it is not

statistically significant. When we control for ln(GDP ), ln(GDP ) is not statistically

significant. However, when we control for GDP growth rate, it is statistically signifi-

cant. The following two equations show the time ratio for the median survival time
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when GDP growth rate increase by 0.01.

T̂R(g.GDP + 0.01
g.GDP

|OECD, Y HIF = 0) = e−0.718∗0.01 = 0.993 (2.9)

T̂R(g.GDP + 0.01
g.GDP

|OECD, Y HIF = 1) = e−0.718∗0.01−2.057∗0.01 = 0.973 (2.10)

In general, countries with higher GDP growth rate have shorter duration of HDE.

As shown in Equation 2.9, when Y HIF = 0 and controlling for OECD, the median

survival time of high debt episode for countries with one percentage point higher GDP

growth rate is 0.7 percent shorter than those episodes with smaller GDP growth rate.

When Y HIF = 1 shown in Equation 2.10, the magnitude of impact is larger and the

median survival time is 2.7 percent shorter.

The estimation of ln(λ) in the Weibull model are shown to be statistically sig-

nificant within 99 percent confidence interval, thus we can reject the null hypothesis

that λ = 1 and conjecture that the Weibull model is a better fit compared to the

exponential model. Additionally, all the four columns of Table 2.9 have λ > 1 which

means that the hazard function is monotonically increasing over time. Meanwhile,

the estimated hazard ratios from the Weibull model are closer to the hazard ratios

from the Cox PH model compared with the hazard ratios estimated from exponen-

tial model. For example, the hazard ratio for YHIF for Weibull model in Table 2.8

Column 4 equals 0.475, and it equals 0.569 in Table 2.6 Column 4 for the exponential

model. For the Cox PH model, it equals 0.427 based on Table 2.1 Column 4. So the

Weibull model provides a better fit.

2.5 Survival Experience for High Inflation Episode

In this section, I turn things around, and check potential factors that are associated

with the duration of high inflation episode (HIF). The dependent variable of interest

is the duration of HIF10 as is defined earlier. The main variable of interest is the

dummy variable Y HDE which equals 1 whenever the country comes across an HDE
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during any year that the country is in HIF . Three survival analysis models are

utilized including the Cox PH model, the exponential model, and the Weibull model.

2.5.1 The Cox PH Model

The baseline results from the Cox PH model are shown in Table 2.10 using the exact

marginal approximation to deal with ties. Similar to the previous part, the Cox

PH models have no intercept and the coefficients shown should be exponentiated to

represent the ratio of the hazards for unit change in the covariate. For example, the

coefficient for Y HDE is −0.461 in the Column (1) in Table 2.10. Then the relative

hazard ratio between the high inflation episodes with Y HDE = 1 and Y HDE = 0

is:
h(t|Y HDE=1,OECD)
h(t|Y HDE=0,OECD) = exp(−0.461)

≈ 0.631

The coefficient is statistically significant within 95 percent confidence interval. Thus

HIFs with Y HDE = 1 in general only have 63.1 percent probability of exiting the

high inflation episode compared to HIFs with Y HDE = 0. The magnitude of the

coefficient and level of significant do not change in a big degree when I add more

controls to the regression, as shown in other columns in Table 2.10.

The coefficient for OECD is −0.0263, the hazard ratio equals e−0.0263 ≈ 0.974

shown in column 1 in Table 2.10. However, the coefficient is not statistically signifi-

cant. Even when we add other alternative controls, the results do not change. Thus

whether the country is a member of the OECD does not matter for the duration of

high inflation episode.

Two different types of indicator for economic development are included as addi-

tional controls. The first is ln(GDP ), its estimated coefficient is −0.249, the hazard

ratio equals e−0.249 ≈ 0.780. And it is statistically significant within 95 percent con-

fidence interval. This suggests that higher GDP is associated with longer duration

of the defined high inflation episode. The alternative choice is the GDP growth rate.
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Its coefficient is 4.519, the hazard ratio is e4.519 ≈ 91.74, and the coefficient is statisti-

cally significant within 99 percent confidence interval. Adding the interaction term to

the regression in column (3) changed this result. As shown in column (4), when the

interaction term between GDP growth rate and YHDE were added, the coefficient for

GDP growth rate itself becomes insignificant, as is the interaction term itself., This

result is different compared to our result in the previous part. GDP growth rate does

not impinge the association between the high debt overlap and duration of the high

inflation episodes.

2.5.2 Exponential Model

Table 2.11 demonstrates the regression results for the exponential model in the rel-

ative hazard metric and Table 2.12 shows the coefficients from AFT metric. The

numbers shown are the relative hazards for the model. For example, in the Column

(1) in Table 2.11, the listed hazard rate for Y HDE is 0.735 and there is no statistical

significance. Even though the magnitude of Y HDE remains stable around 0.6-0.7,

the statistical significance does not always hold. The statement that existence of high

debt episode is associated with longer duration of the high inflation episode which

can be confirmed in other models in this chapter can not be made here.

In Column (1), the hazard rate for OECD equals 0.951, however it is not sta-

tistically significant. The magnitude of the hazard rate and level of significance for

OECD does not change even when I add other alternative controls. This shows that

whether or not the country is a member of OECD do not matter for the duration of

the high inflation episode.

The variable ln(GDP ) is used as a additional control in Column (2). The hazard

rate for ln(GDP ) in column (2) equals 0.894 but it is not statistically significant.

Alternatively, when I use the GDP growth rate as additional control, the hazard rate

for GDP growth rate equals 45.254 and it is statistically significant within 99 percent
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confidence interval.

However, when I add an additional control - the interaction terms between GDP

growth rate and YHDE, the statistical significance in the GDP growth rate changed.

It is now no longer statistically significant but the interaction term is statistically

significant within 95 percent confidence interval. In Column (4) Table 2.12, the time

ratio for YHDE is based on the formula e(0.463 − 5.092 ∗ g.GDP ). When the GDP

growth rate is higher than 9.09 percent, the existence of HDE is associated with

shorter duration of HIF. However, if the GDP growth rate is lower than 9.09 percent,

the existence of HDE is associated with longer duration of HIF.

2.5.3 Weibull Model

The regression result from Weibull model for the HR metric is included in Table 2.13

and the AFT metric is included in Table 2.14 and the numbers provided in Table 2.14

are coefficients. When we only include Y HDE and OECD as controls, the coefficient

for Y HDE shown in Column (1) equals 0.257. Thus the time ratio at the median

survival time is:

T̂RY HDE = t50(Y HDE = 1, β, λ)
t50(Y HDE = 0, β, λ) = eβY HDE = e0.257 = 1.293

and it is statistically significant within 95 percent confidence interval. For countries

experiencing a high inflation episode, coming across a high debt episode does matter

for the duration of high inflation episode. When we add GDP growth rate and its

interaction term with YHDE, the estimated marginal GDP growth rate is 0.356
2.991 =

12.229 percent which means that when GDP growth rate is high than the 12.229

percent, time ratio for YHDE is smaller than one; otherwise, time ratio is larger than

one. This means when GDP growth rate is higher than 12.229 percent, those HIFs

with YHDE=1 has a shorter duration compared to the other group; when the GDP

growth rate is lower than 12.229 percent, those HIFs with YHDE=1 has a longer
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duration compared to the other group. The significant confidence interval is only

around 90 percent.

Similar to the previous part, OECD does not matter for the duration of high

inflation episodes. None of the estimated coefficients are shown to be statistically

significant. The GDP growth rate matters for the duration of high inflation and its

impact is correlated with the existence of high debt episodes.

In this section, we used three models to check potential factors that are associated

with the duration of the high inflation episodes. Results from these three models are

quite consistent with each other. Based one the estimated results from Weibull model

in last column of Table 2.13, ln(λ̂) equals 0.559. So the ancillary shape parameter

λ̂ = 1.57 which means the hazard function is monotonically increasing over time

instead of constant over time. Weibull model is a better fit compared with the

exponential model. Comparing the exponential model and Weibull model with the

Cox PH model also reveals that the hazard rates estimated from the Weibull model

are more similar to the Cox PH model.

2.6 Conclusion

This chapter first investigates the potential factors that have association with the

duration of high debt episodes. Our results demonstrate that the association between

high inflation episodes and high debt episodes relies heavily on the GDP growth rate.

In general, higher GDP growth rates are associated with shorter high debt episode.

However, when the GDP growth rate is lower than some value, the existence of high

inflation episodes is associated with longer duration of high debt episodes. Whether

the country is a member of the OECD or not doesn’t matter for the duration of the

HDEs. This result is consistent across the Cox PH model, the exponential model,

and the Weibull distribution.

This chapter also investigates potential factors that have an association with the
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duration of high inflation episodes. In general, high inflation episodes with Y HDE =

1 have longer duration if GDP growth rate is lower than some threshold value. This

effect is not stable across different models used. Whether the country is an OECD

member or not does not matter for the duration of high inflation episodes.

I only show results for a threshold value of 50 percent for high debt episodes

and 10 percent for high inflation episodes. The threshold value of 90 percent for

the high debt episode could also be used. However, it would reduce the sample size

significantly and so any results would be very imprecisely estimated.

Table 2.1 The Cox Proportional Hazards Model-HDE50
Exact Marginal

VARIABLES (1) (2) (3) (4)
YHIF -0.594*** -0.545** -0.523** -0.852***

(0.219) (0.224) (0.222) (0.253)
OECD -0.437* -0.661** -0.397 -0.417

(0.263) (0.330) (0.264) (0.264)
ln(GDP ) 0.117

(0.107)
g.GDP 3.312*** 1.392

(0.956) (1.330)
YHIF*g.GDP 6.823***

(2.160)
Observations 2,296 2,296 2,289 2,289

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.2 Estimated HR for YHIF
with Fixed GDP Growth Rate

g.GDP HR 95% CIE
–0.062 0.279 0.180 0.434
0.021 0.492 0.317 0.764
0.054 0.617 0.397 0.957
0.09 0.788 0.508 1.224
0.2 1.670 1.075 2.592
0.75 71.183 45.851 110.509

Table 2.3 The Cox Model Using Different Approximation

(1) Breslow (2)Efron (3) Exact-Marginal (4)Exact-Partial
YHIF -0.809*** -0.841*** -0.852*** -0.884***

(0.233) (0.241) (0.253) (0.262)
OECD -0.408 -0.418 -0.417 -0.436

(0.249) (0.256) (0.264) (0.271)
g.GDP 1.308 1.380 1.392 1.441

(1.061) (1.146) (1.330) (1.396)
YHIF*g.GDP 5.986*** 6.509*** 6.823*** 7.270***

(1.503) (1.571) (2.160) (2.412)
Observations 2,289 2,289 2,289 2,289

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.4 Cutoff GDP Growth Rate

(1) Breslow (2)Efron (3) Exact-Marginal (4)Exact-Partial
Cutoff g.GDP 0.135 0.129 0.125 0.122
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Figure 2.2 Test for the PH Assumption for YHIF

Table 2.5 Score Test and p−values for the Test of Proportional Hazards
Assumption for HDE50

g(t) = t g(t) = ln(t) g(t) = ŜKM(t) g(t) = rank(t)
Covariate df chi2 p chi2 p chi2 p chi2 p
YHIF 1 0.29 0.588 0.92 0.341 0.70 0.403 0.80 0.372
OECD 1 0.50 0.478 1.02 0.313 0.78 0.376 0.96 0.327
g.GDP 1 0.36 0.549 0.03 0.860 0.16 0.689 0.09 0.763

YHIF*g.GDP 1 0.08 0.7832 0.01 0.906 0.00 0.948 0.00 0.990
Global 4 1.24 0.8720 1.093 0.748 1.73 0.785 1.89 0.756
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Table 2.6 Exponential Model for HDE50-Hazard Ratio

VARIABLES (1) (2) (3) (4)
YHIF 0.663* 0.697* 0.695* 0.569**

(0.142) (0.151) (0.149) (0.132)
OECD 0.672 0.521** 0.700 0.682

(0.176) (0.167) (0.184) (0.179)
ln(GDP) 1.151

(0.122)
g.GDP 21.648*** 4.994

(17.523) (5.709)
g.GDP*YHIF 50.853**

(80.400)
Constant 0.055*** 0.017*** 0.049*** 0.053***

(0.008) (0.016) (0.007) (0.008)
Observations 2296 2296 2289 2289

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.7 Exponential Model for HDE50-AFT

VARIABLES (1) (2) (3) (4)
YHIF 0.411* 0.361* 0.363* 0.563**

(0.214) (0.217) (0.215) (0.232)
OECD 0.398 0.653** 0.357 0.382

(0.261) (0.320) (0.262) (0.262)
ln(GDP) -0.140

(0.106)
g.GDP -3.075*** -1.608

(0.809) (1.143)
g.GDP*YHIF -3.929**

(1.581)
Constant 2.893*** 4.055*** 3.011*** 2.936***

(0.143) (0.896) (0.152) (0.150)
Observations 2296 2,296 2,289 2,289

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.8 Weibull Model for HDE50-Hazard Ratio

VARIABLES (1) (2) (3) (4)
YHIF 0.542*** 0.565*** 0.564*** 0.475***

(0.117) (0.124) (0.123) (0.112)
OECD 0.649 0.523** 0.673 0.660

(0.170) (0.169) (0.177) (0.173)
ln(GDP) 1.120

(0.115)
g.GDP 13.283*** 3.272

(11.226) (3.943)
g.GDP*YHIF 29.934**

(48.996)
Constant 0.007*** 0.003*** 0.007*** 0.008***

(0.003) (0.003) (0.003) (0.003)
ln(λ) 0.534*** 0.527*** 0.513*** 0.502***

(0.080) (0.080) (0.082) (0.083)
Observations 2,296 2,296 2,289 2,289

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.9 Weibull Model for HDE50-AFT

VARIABLES (1) (2) (3) (4)
YHIF 0.359*** 0.337*** 0.343*** 0.451***

(0.126) (0.128) (0.129) (0.142)
OECD 0.254 0.383** 0.237 0.252

(0.155) (0.195) (0.158) (0.160)
ln(GDP) -0.0668

(0.0614)
g.GDP -1.549*** -0.718

(0.534) (0.735)
g.GDP*YHIF -2.057**

(1.015)
Constant 2.915*** 3.466*** 2.977*** 2.935***

(0.0845) (0.517) (0.0913) (0.0916)
ln(λ) 0.534*** 0.527*** 0.513*** 0.502***

(0.0801) (0.0800) (0.0819) (0.0827)
Observations 2,296 2,296 2,289 2,289

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.10 The Cox Proportional Hazards Model-HIF10

VARIABLES (1) (2) (3) (4)
YHDE -0.461** -0.616*** -0.449** -0.584**

(0.208) (0.225) (0.208) (0.228)
OECD -0.0263 0.283 -0.0429 -0.0298

(0.292) (0.333) (0.292) (0.292)
ln(GDP ) -0.249**

(0.126)
g.GDP 4.519*** 1.508

(1.222) (2.518)
g.GDP*YHDE 3.906

(2.849)
Observations 854 854 853 853

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.11 Exponential Model for HIF10-Hazard Ratio

VARIABLES (1) (2) (3) (4)
YHDE 0.735 0.699* 0.760 0.630**

(0.150) (0.148) (0.155) (0.138)
OECD 0.951 1.087 0.967 0.980

(0.276) (0.352) (0.281) (0.285)
ln(GDP ) 0.894

(0.105)
g.GDP 45.254** 1.620

(53.774) (3.094)
g.GDP*YHDE 162.755**

(381.558)
Constant 0.140*** 0.361 0.124*** 0.138***

(0.022) (0.363) (0.021) (0.023)
Observations 854 854 853 853

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.12 Exponential Model for HIF10-AFT

VARIABLES (1) (2) (3) (4)
YHDE 0.308 0.358* 0.275 0.463**

(0.204) 0.212 (0.203) (0.220)
OECD 0.051 -0.084 0.034 0.020

(0.290) 0.324 (0.291) (0.291)
ln(GDP ) 0.112

(0.118)
g.GDP -3.812*** -0.482

(1.188) (1.910)
g.GDP*YHDE -5.092**

(2.344)
Constant 1.965*** 1.020 2.086*** 1.978***

(0.160) (1.006) (0.021) (0.166)
Observations 854 854 853 853

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.13 Weibull Model for HIF10-Hazard Ratio

VARIABLES (1) (2) (3) (4)
YHDE 0.637** 0.522 0.645** 0.536***

0.129 0.117 0.131 0.120
OECD 0.929 1.363 0.957 0.964

0.269 0.456 0.278 0.280
ln(GDP ) 0.741**

0.094
g.GDP 67.311*** 1.838

87.852 4.222
g.GDP*YHDE 186.627*

507.371
Constant 0.024 0.268 0.021*** 0.024***

0.009 0.285 0.008 0.009
ln(λ) 0.562*** 0.599*** 0.566*** 0.559***

(0.0720) (0.0720) (0.0727) (0.0726)
Observations 854 854 853 853

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.14 Weibull Model for HIF10-AFT

VARIABLES (1) (2) (3) (4)
YHDE 0.257** 0.357*** 0.249** 0.356***

(0.116) (0.121) (0.115) (0.129)
OECD 0.0423 -0.170 0.0247 0.021

(0.165) (0.182) (0.165) (0.166)
ln(GDP ) 0.165**

(0.0676)
g.GDP -2.391*** -0.348

(0.748) (1.313)
g.GDP*YHDE -2.991*

(1.573)
Constant 2.125*** 0.723 2.200*** 2.135***

(0.0947) (0.582) (0.0980) (0.100)
ln(λ) 0.562*** 0.599*** 0.566*** 0.559***

(0.0720) (0.0720) (0.0727) (0.0726)
Observations 854 854 853 853

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Chapter 3

Negative Growth and High Debt: A Survival

Analysis Approach

3.1 Introduction

In their paper “Growth in a Time of Debt”, Carmen Reinhart and Kenneth Rogoff

found an inverse association between high public debt and the growth rate of real

GDP per capita across countries (Reinhart and Rogoff (2010)). This paper triggered

a new round of discussion regarding debt policy and its effect on economic activity.

Although it has been criticized for its data omissions and coding errors (Herndon

et al. (2014)), later work has been inconclusive as to the main result. It has been

difficult to demonstrate strong evidence for the causality going from high debt to

economic growth or vice versa (Panizza et al. (2013)). Even though the discussions

have been inconclusive, both empirically and theoretically, the negative association

emphasized by Reinhart and Rogoff’s paper has had an impact on the direction of

research and public policy.1 The relation between government debt issuance and the

GDP growth rate is a topic worth exploring more fully.

In this chapter, we approach this question from a different perspective. First of all,

we equate an economic crisis to a protracted fall in real output per capita, which we

call a “negative growth episode” or, simply, a depression. Instead of investigating the

yearly change of the GDP growth rate and public debt (or average of five year yearly

1In February 2010, George Osborne, the soon-to-be British Chancellor of the Exchequer, cited
the results of Reinhart and Rogoff (2010) as he called for austerity policies on government spending.
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data), which are the common approaches in the recent work, we focus on the length

of negative growth periods across different countries. Then we use survival analysis

to analyze the duration of economic crises and their relationship to episodes of high

public debt-to-GDP ratios.2 The empirical methodology includes non-parametric,

semi-parametric, and parametric survival analysis. All the regressions show consistent

results: high debt is positively correlated with long duration of negative growth

episodes – countries with high debt ratios seem to be those for which it is also harder

to get out of a depression. Causality, however, is difficult to establish. Does the high

debt lead to a lengthening of the depression? Or, do long depressions lead countries

to borrow more relative to their GDP? While causality is important, we think it is

important to begin the discussion about duration of crises and existence of debt.

This chapter is organized as follows. In the next section we provide a review of

the recent literature. In Section 3.3 we describe our data. We begin our analysis to

see if the existence of high-debt episodes are systematically related to the duration of

negative growth episodes in Sections 3.4 and 3.5. There, we use the non-parametric

method of Kaplan-Meier. In Section 3.6 we study the same problem using the Cox

Proportional Hazards semi-parametric technique. Our last approach is parametric.

Section 3.7 uses three different parametric models to investigate the effect of debt on

depression duration. Section 3.8 concludes the chapter.

3.2 Literature Review

The paper by Panizza et al. (2013) surveys different theoretical models that bring

together public debt3 and economic growth. The standard crowding-out effect can

explain why high debt has a negative impact on economic growth. This negative

2In Breuer and McDermott (2018), the authors also look at episodes of debt and depression, but
do not analyze duration. That paper describes coincidence of events and timing of entry and exit.

3All the terms “debt” mentioned in this paper refer to “debt-to-GDP ratio”.
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effect can be exaggerated if high debt levels increase investors’ uncertainty towards

future governmental policies. Keynesian models, on the other hand, can explain why

expansionary fiscal policies may have a positive effect on economic activity. Theoret-

ical models, then, can only give ambiguous results about the effect of expanding debt

on economic activity.

The empirical literature has found no consensus on the relationship between high

debt levels and slower economic growth. As noted, the work of Reinhart and Rogoff

has been especially influential in rekindling this area of research (Reinhart and Rogoff

(2010); Reinhart et al. (2012)). They provided basic evidence that average and median

GDP growth are substantially lower when public debt is above 90 percent of GDP.

Their results did not go unchallenged; questions arose relative to the nature of the

threshold itself and to the nature of causality.

One challenge is to verify whether there exists a common threshold beyond which

public debt has a negative impact on the GDP growth. Different approaches have

been employed to verify whether the relation between public debt and GDP growth

rate is nonlinear. One way to determine this is by including a quadratic term in

the regression. Checherita-Westphal and Rother (2012) checked the causality for the

twelve European countries using this approach together with fixed effects and system

GMM. Their results suggest an inverted U shaped curve between debt and growth.

Another strand of the literature allows the threshold debt ratio - in a regression of

output growth on the debt ratio – to be determined endogenously by a grid search.

Cecchetti et al. (2011) found a threshold close to original threshold of .90 using this

method. Others identified lower thresholds.4 The work of Bruce Hansen (see, for

example, Hansen (2015, 1999); Caner and Hansen (2001)) has been a large influence

4See, for example, Égert (2015), who finds a threshold of .20 for central government debt and
.60 for general government debt. Baglan and Yoldas (2016) also find a low threshold (.18) in their
two-regime analysis, but they note that it is quite imprecisely estimated.
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on this approach.5

Causality is difficult to establish, or even to conceptualize. That is, debt and

economic activity are potentially endogenous variables in a complex system. It is

common in the literature to lag the debt variable as a way to reduce the possibility

of reverse causality. Some economists have used instrumental variables to identify

causality. One example is Woo and Kumar (2015) who employ internal instruments

(lag of covariates) and the system GMM estimator to address possible endogeneity.

However, system GMMmay not be suitable for datasets with relatively small numbers

of cross-sectional units. Checherita-Westphal and Rother (2012) study twelve euro-

area countries over the period 1970-2008. They instrument the debt-to-GDP ratio of

country i at time t with the average debt-to-GDP ratio in the other eleven countries

at time t. The authors find a non-linear hump-shaped relationship between debt and

growth. However, their analysis has been criticized for not satisfying the exclusion

restriction for the instrumental variable.6 Panizza and Presbitero (2014) use another

instrumental variable - an interaction between foreign currency debt and movements

in the exchange rate. Their analysis relies on the fact that changes in the exchange

rate have a direct impact on the debt-to-GDP ratio if foreign currency debt is part of

public debt. Their results do not support the negative causality between high debt

and GDP growth for advanced economics.

Another area of concern is the proper definition of public debt. Gross debt, net

debt, explicit debt or implicit government debt have been used in the literature. While

gross debt is more reliable to collect, the use of net debt7 provides more accurate

information about the government’s liability. Collecting this information is more

5See also Caner et al. (2010), who find .77 for all countries and .64 for developing countries;
Elmeskov and Sutherland (2012) who find two thresholds, one of about .40 and one close to .66.;
and Minea and Parent (2012), who find that the effect of debt on growth actually becomes positive
at a threshold of 1.15.

6Panizza et al. (2013), p. 9.

7Net debt is gross debt excluding the asset held by government.
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challenging and there is no clear-cut standard for net debt across countries.

Finally, there have been investigations into the nature of outside influences that

may change the nature of the relation between growth and debt. Kourtellos et al.

(2013) provided evidence suggesting the impact of debt depends on the development of

democracy and the negative effect is limited to low-democracy countries. Other work

suggests that the negative relation between high debt and GDP growth is not evident

in OECD and other industrialized countries (see Breuer and McDermott (2018) ,

Panizza and Presbitero (2014), and Puente-Ajovín and Sanso-Navarro (2015)).

Our approach differs in two ways from this literature. First, we use an episodic

approach. We do so to redirect attention to economic crises, not just reductions in

the rate of growth. Second, we use survival analysis to investigate the duration of the

crises. Our work analyzes a different question from that addressed by recent work.

3.3 Data

The definition of a “negative growth episode” (NGE) or “depression” is based on the

work of Breuer and McDermott (2013). They define episodes of economic depression

based on two criteria: the country must experience a cumulative decline in per capita

output of 20 percent or more8 that is sustained for at least four years.9 This definition

is necessarily arbitrary; there is no unambiguous way to measure what is meant by

a depression. We focus on severe economic downturns because this seemed to be

the motivating force behind the original hypothesis of Reinhart and Rogoff: that too

much debt leads to a crisis, not just a softening of the rate of growth. The episodes

are constructed from the Penn World Table, version 9.0. In this data, there are 141

depressions in 104 countries from the year 1950 to 2014. Within the sample period,

8More precisely, the criterion is a natural log difference of .20 or more.

9For a detailed description of the construction of data, see Breuer and McDermott (2013).
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four countries10 experienced three NGEs; 29 countries experienced two NGEs and 71

countries experienced only one NGE. The dummy variable NGE takes the value 1

whenever a country is in a depression and 0 otherwise. The average length of the

negative growth episode is 10.54 years.11

A “high debt-to-GDP episode” (HDE) is defined to be a period lasting at least

four consecutive years during which the debt-to-GDP ratio is at least 90 percent. As

noted above, this definition comes from the paper by Reinhart and Rogoff (2010) that

has become a benchmark for many papers. It, too, is arbitrary and some authors

have tried lower cut-off points, or endogenous thresholds (Cecchetti et al. (2011)).

We keep the 90 percent threshold to make our work comparable to other studies.

For public debt data, we use the data in the IMF’s Historical Public Debt Database

(Abbas et al. (2011, 2013)). Between the years 1950 and 2012, there are 66 HDEs in

132 countries that have available data on public debt. Within the sample period, 73

of the countries never experienced an HDE; 52 of them experienced one HDE; And

seven of them experienced two HDEs.12 We define HDE to be a dummy variable

that takes the value 1 if a country is in a high debt episode and 0 otherwise.

One thing to keep in mind is that the first thing we do is trim our data set by

discarding all observations for which NGE (and y) are missing. Therefore, in our

data, NGE is always either 0 or 1, but HDE may also contain missing values. This

is important when we define the key indicator variable ovl. This dummy defines a

subset of depressions, those that overlap with a high debt-to-GDP ratio episode. By

“overlap” we mean that they have at least one year in common. In other words,

ovl = NGE = 1 for every year of the NGE if an HDE overlaps with the NGE, even

10These four countries are Zimbabwe, Democratic Republic of the Congo, Guinea-Bissau and
Lebanon.

11The longest NGE in our sample is Niger, 43 years long between 1963 and 2005. The second
longest is 27 years. If Niger is excluded from the sample, the average length of an NGE is 10.30.

12They are Belgium, Israel, Singapore, Sri Lanka, Egypt, Jamaica, and Togo.
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if it is just for one year. If an HDE does not overlap with the NGE, then during that

depression, we have NGE = 1 but ovl = 0. The ovl dummy is constant within any

episode defined by NGE.

In defining ovl, however, as long as the NGE contains at least one value for HDE,

we ignore any missing values for HDE in that same NGE. This amounts to assuming

that missing values (when there are some non-missing values) for HDE are 0. This,

in turn, means that we are underestimating the number of NGEs for which ovl = 1,

since if we had the data on HDE some of our ovl = 0 observations might switch to

ovl = 1. The reverse could not happen: ovl could never switch from 1 to 0. This

might bias our results, although the direction is not clear: it is not a case of simple

measurement error. For this reason, we also construct the variable ovl2, which is the

same as ovl but is constructed only after we remove all the NGEs for which the data

for HDE is missing. This reduces our sample size by about a third, but provides a

check on our results.

We use two other covariates as controls. The variable dev is an indicator variable

to distinguish industrialized, developed countries (dev = 1) from those are still de-

veloping (dev = 0). Industrialized economies are defined as those with gross national

income (GNI) per capita of $12, 476 or more in 2015; otherwise, they are defined as

developing countries.13

Our only continuous variable is the inflation rate inf , which is defined as the

log difference in the CPI.14 We include inflation since there is a presumption that

governments tend to be expansionary in terms of monetary policy when the debt

burden becomes too great. It is interesting to see (1) if the relationship between high

debt and depression is affected by inflation; and (2) if inflation has any independent

effect on the duration of depressions.

13This criteria, and the data, comes from the World Bank.

14The CPI data is from International Financial Statistics of the International Monetary Fund.
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3.4 Survival Analysis

We use survival analysis – often called duration analysis or event history analysis –

to analyze the time to the occurrence of the event, defined to be the year that the

economy exits the negative growth episode. The term “survival” suggests that the

current state is desirable. While often true in medicine, where the current state is

living, it is much less so in economics, where the current state may well be bad, like

unemployment or, as in our case, depression. It is natural then that the act of exit

was often considered a bad thing, and was equated to “failure” and its probability

called a “hazard”. In our study, the exit is unequivocally good and survival is bad.

There are several reasons why ordinary least-squares (OLS) linear regression is

not appropriate. First of all, the OLS model assumes the residuals are normally

distributed. But this may not be true for the distribution of the time-to-event. For

example, the instantaneous risk of exiting the NGE may be constant over time. More

importantly, the time-to-event may not be distributed symmetrically, in which case

the results from the linear regression model are biased. Another reason is the existence

of right-censoring in the data. Right-censoring refers to the fact that some countries

were still in a negative growth episode in the last year of available data, so we really

do not know when the event – the exit – occurs. This happens frequently in duration

data, and OLS cannot deal with it effectively. Survival analysis is the most efficient

way to analyze episodic data.

To do survival analysis, we need to convert the yearly data into duration format.

The analysis time t is rescaled from the yearly data and converted based on the

calendar year in which the country entered the NGE. For example, Argentina had an

NGE between 1997 and 2003. The algorithm for converting to analysis time t works

like this. Year 1997 is set as the entering year (t = 1) for the NGE; Year 2003 is

set as the time of the exit event for the NGE (t = 7); the duration of this NGE is

considered to be 7 years.
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We begin our analysis of the duration of depression with the Kaplan-Meier method.

3.5 Non-Parametric Analysis

3.5.1 The Kaplan-Meier Statistic

The most common non-parametric method of duration analysis is that of Kaplan and

Meier (Kaplan and Meier (1958)). The object is to estimate the survival function S (t)

without making any assumptions about its functional form in nature. The survival

function gives the probability that the episode will last to time t, which is also the

probability that the episode will end right after time t. The Kaplan-Meier estimator,

also called the product-limit estimator, allows the researcher to compare the survival

experience across covariates that do not vary over time. In our case, we are mainly

interested in using ovl to divide the sample into two groups to see there are systematic

differences in their exit behavior.

We have several depression episodes in the data. Let the observed exit times be

called t1, t2,....tj. At any time tj, one or more countries can exit. The Kaplan-Meier

estimate of the survival function at time t is given by the equation:

Ŝ(t) =
∏
j|tj≤t

(nj − dj
nj

)

The variable nj is the number of episodes “at risk” at time tj – that is, the total

number of episodes that are still ongoing at time tj – and dj is the number that

exit naturally during tj. In particular, the value dj excludes those episode that are

censored at time tj.15 The estimate Ŝ(t) is the multiplication of all the conditional

probabilities of surviving at each observed tj for tj ≤ t.

Table 3.1 shows the detailed output for the Kaplan-Meier estimate for all of the

NGEs in our data. That is, we carry out the analysis with all of the 141 NGEs,

15Censoring is only about right censoring, which refers to an NGE that ends due to the fact that
no further data is available. If there were more years of data available, the NGE might be longer.
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whether or not there was any data for HDE.

Since the minimum requirement for the negative growth episode is four years, the

observed minimum exit time16 t is 4 as shown in the second row of Table 3.1. When

time equals 4 – that is, at any time within the 4th year after the start of the NGE

– a total of 141 NGEs are still ongoing (listed in the column titled “No. At Risk ”).

Over the course of Year 4, 14 of them exit the depression state and are noted as “No.

Exited” in the table. In the same row, there is a 1 in the column titled “Net Lost”

representing the one right-censored episode. So the corresponding estimated survival

probability is Ŝ(4) = 141−14
141 ≈ 0.9007. When the time is 5, the “No. At Risk” is 126

which is retrieved by 141−14−1, and the number that exit is 24. The corresponding

survival probability is Ŝ(5) = 0.9007 ∗ (126−24
126 )≈ 0.7291. We interpret this number

as follows: the probability of remaining in an economic depression at t = 5 is 72.91

percent.

The last row of Table 3.1 has time 43, which means that the observed maximum

duration of an NGE in our sample is 43 years. The last three columns of Table 3.1

provide information on the standard error and confidence interval of the Kaplan-

Meier estimates.17 As time goes on, the estimated survival probability declines. All

depressions must end eventually. Figure 3.1 shows how the estimated probability Ŝ (t)

falls over time. There we see that the depression that lasts for 43 years is, indeed, an

outlier.

We are most interested in whether or not depressions that overlap with high-debt

episodes last longer than those that do not. To address this question, we cannot use

the sample that appears in Table 3.1 and Figure 3.1 since some of the 141 NGEs

16Since the first year of NGE is set as the entering year, when the country exits at the fourth
year, the corresponding duration is calculated as 4.

17The standard error is calculated based on the Greenwood (1926) formula ˆV ar{Ŝ(t)} =
Ŝ2(t)

∑
j|tj≤t

dj

nj(nj−dj) . The 95 percent confidence interval is the asymptotic variance proposed by
Kalbfleisch and Prentice (2002b).
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have no data for ovl. We have 99 depressions for which ovl = 0 or ovl = 1.18 Figure

3.2 (a), shows the differences in Ŝ (t) when we split our sample according to ovl:

whether or not the country simultaneously experienced a high-debt episode in at

least one year of its existence. It is apparent that the speeds at which countries exit

the episodes are different depending on whether ovl = 1 or ovl = 0. The dashed,

red line in Figure 3.2 (a) represents the group of NGEs for which ovl = 1; the solid,

blue line represents the group of NGEs for which ovl = 0. The slopes of both lines

are negative, but the concavities are different. The red line lies above the blue line

across the majority of the analysis time, which means for each observed time tj, the

probability of remaining in an economic depression for the group with high debt is

greater than the other group. A closer examination reveals it takes less than 8 years

for the group without a high debt episode to reach the 50 percent survival probability

while it takes more than 14 years for the group with high debt to obtain the same

level. We investigate timing in greater detail below.

There is far less evidence that the level of development, in and of itself, is as-

sociated with duration of depression. The dashed, red line in Figure ?? represents

the industrialized countries (dev = 1) while the solid, blue line represents the group

of developing countries (dev = 0). Industrialized countries, in general, have shorter

NGEs and recover more quickly from depression, but the difference is not striking.

In fact, it is hardly perceptible.

3.5.2 Median and Mean Survival Time

The median and mean survival times are the main ways to characterize the informa-

tion regarding duration in the context of the Kaplan-Meier model.

18Recall that if the NGE had at least one non-missing value for HDE we treated all the missing
values as 0. See below for an alternative approach using ovl2 which excludes NGEs unless they have
full data for HDE.
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The median survival time is defined as:

t̂(50) = min{tj|Ŝ(tj) ≤ 0.5}

This is the year after which exactly 50 percent of the episodes are expected to remain

in an economic depression. To analyze median survival times, we again divide our

sample into two groups. As before, we first split the sample according to whether or

not there was an overlap with a high-debt episode (ovl). Then we divide according

to per capita income level (dev). This two-way classification gives us four distinct

groups. The results for the median times are shown in Table 3.2 (a). The rows titled

“t̂ (50)” show the estimated median survival times for the groups, while the rows

labeled “CI” give the confidence intervals around those estimates. We also show N ,

the number of negative growth episodes in each of the four groups. The last column

(ovl) and row (dev) give the information for the two groups considered without respect

to the other.

There are 99 NGEs for which ovl is either 0 or 1. The overall median survival time

was 10 years. Of these, 63 never overlapped with a high-debt episode (ovl = 0: Panel

A, Col. (4) ). For them, the median survival time is 8 years. For the groups that did

overlap with a high-debt episode (ovl = 1), the median survival time of the economic

downturn is almost twice as long, 15 years (Panel B, Col. (4) ). Only about a third

of the countries had overlapping high-debt episodes (36 of 99), but those that did

experienced a significantly longer time in the depression, according to the confidence

intervals.

The state of development makes a big difference for the effect of ovl on survival.

If dev = 0, then median survival times are almost twice as high for episodes that

coincide with a high-debt episode (15 vs. 8); for dev = 1 they are virtually the same

(6 vs 7).19 In other words, the overall effect noted in Col. (4) is due almost entirely

19We note, however, that we have very few observations – only 4 - in the cell for ovl = dev = 1.
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to the cohort of developing-country negative growth episodes.

The unconditional comparison between industrialized (dev = 1) and developing

(dev = 0) countries also reveals a difference in median survival time, although it

is not so precisely estimated (Panel C of Table 3.2 (a)). Industrialized countries’

survival time is 6 years on average, compared to 10 years for developing countries.

There is considerable common range in confidence intervals, however, so it is not

clear if the difference is significant. Depression is far more common in developing

countries, though. Of the 99 NGEs in this sample, 79 of them occurred in developing

countries.20

The effect of ovl on the marginal effect of dev is enormous. When ovl = 1 the

condition of being a developing country causes the median survival time to be over

two times higher: 15 vs. 7 (Panel B). For ovl = 0, the effect is much smaller: 8 vs. 6

(Panel A).

The mean survival time µT is defined as

µT =
ˆ tmax

0
Ŝ(t)dt

where tmax is the observed maximum survival time. As shown in Table 3.2 (b), the

grand mean duration of an NGE is 11.59 years.

The basic message of Table 3.2 (b) is similar to that of Table 3.2 (a). The presence

of a high-debt episode sometime during a depression is associated with a longer mean

exit time (15.28 vs. 9.38). The level of development also matters for mean exit time:

industrialized countries tend to exit earlier, but the association is not as striking (12.00

vs. 10.04). Compared to the median, the difference between the mean duration for

ovl = 1 and ovl = 0 is less apparent.

If we use our small sample, in which we discard all NGEs unless there are no

missing observations for HDE, the results are very similar although, as might be

20If we use the full 141 country sample, the point estimates are even closer: 6 (dev = 1) and 9
(de = 0). Their confidence intervals also show a large common range.
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expected, across all categories survival times are shorter. While the sample size falls

from 99 to 69, as we discussed in Section 3.3, we believe that the overlap measure

based on this sample, which we call ovl2, will miss fewer overlaps than will ovl.

The main result is preserved: for ovl2 = 0, the median survival time is 7, while for

ovl2 = 1, the median survival time is 15. Mean duration is 7.84 for ovl2 = 0 and

13.46 for ovl2 = 1.

3.5.3 Tests of Significance

High debt appears to have a clear, inverse association with the duration of depressions.

There are two common tests of the significance of the difference in estimated survival

functions: the Log-Rank test and the Wilcoxon tests. Let S0 (t) be the survival

function for countries that experience an overlap with high debt; and let S1 (t) =

S0 (t)ψ be the survival function for the group that did not have an overlap. Then the

null hypothesis is that ψ = 1 against the alternative that ψ < 1.

The test statistic is the ratio:

R = (∑ (d0i − e0i))2∑
v0i

(3.1)

In equation (3.1), d0i stands for the number of exits at time ti in the group that

did overlap with high debt and e0i and v0i are, respectively, the expected value and

variance of d0i under the assumption that the two groups have the same distribution.21

If true, the ratio R has the χ2 distribution. The Wilcoxon test puts more weight

on the observations that are early in the sample. That is, the numerator becomes

(∑ωi (d0i − e0i))2 and the denominator becomes∑ω2
i v0i, where the ωi are the weights

and decline according to the estimated survival function.

The results of these tests are shown in Table 3.3. The column entitled “Events

Observed” shows a total of 24 exit events observed. Of these exits, 35 NGEs experi-

21It can be shown that under this condition, d0i has the hypergeometric distribution. See
Mario Cleves and Marchenko (2016) page 125.
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enced an HDE overlap, while 59 NGEs did not overlap with an HDE.22 The column

entitled “Events Expected” provides the expected total number of events observed if

the two country groups shared the same survival function. The difference between

observed and expected events are large enough that the p − value ≈ 0.00 from a χ2

test for both of the Log-Rank test and Wilcoxon test. Thus, we reject the null hy-

pothesis that they are the same, and conclude that the hazard functions are different

for the two groups.

Lower part of Table 3.3 provides testing results after we separate the sample into

two groups: industrialized countries (dev = 1) and developing countries (dev = 0).

Based on the p− value shown, we fail to reject the null hypothesis for industrialized

countries, but do reject for developing countries. In other words, high debt does

appear to be associated with longer economic crises in developing countries, but not

in industrialized countries. This is an important result: while the duration of de-

pressions is significantly correlated with high public-debt episodes, this phenomenon

is primarily a statement about developing economies. Not only are there almost 4

times as many depressions in developing countries (75 vs 19), the relation between

debt episodes and depression length is only significant for that group.

3.6 the Cox Proportional Hazards Model

3.6.1 The Basic Model and Results

We now shift the focus to the hazard function h(t) for the remainder of the chapter.

The hazard function is the instantaneous rate of “failure” – exiting the NGE – at

time t, given that the country has been in the NGE for t years. It is defined to be the

negative of the rate of change in the survivor function over time: h(t) = − Ṡ(t)
S(t) . The

non-parametric analysis of Kaplan and Meier is convenient for comparing survival

22The total number of NGEs is 94 which is 5 episodes less than 99 because five of the episodes
in the sample are censored.
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functions between groups for covariates with unchanging values over time. The Cox

Proportional Hazards (PH) model (see Cox (1972)) allows us to analyze the relative

effect of several covariates on survival time simultaneously. Moreover, these covariates

can change over time.

The hazard function is assumed to have the following form:

h(t|xi, x−i) = h0(t)exp(XB) (3.2)

where B is a coefficient vector and X is a matrix of covariates, including a variable

of interest xi (here, the high-debt episode overlap) and other control covariates x−i

(here, the level of development and inflation). We call h0(t) the “baseline hazard

function” because it represents the probability of exiting the NGE at time t when

all the covariates are equal to zero, given that the country has been in the economic

downturn for t years. The h0(t) function can have almost any functional form with

respect to time. The only requirement is that h0(t) ≥ 0 since the hazard rate must

be nonnegative. The functional form of exp(XB) also guarantees that the hazard

function is nonnegative over time. By defining the hazard function in such a way, the

hazard rates are all proportional to h0(t) across different values of covariates. The

fact that we do not need to make assumptions regarding the functional form of h0(t)

is one clear advantage of the Cox PH model compared to the parametric models that

we study in the next section and it is also the reason why the Cox PH model is called

a semi-parametric model.

The coefficients in (3.2) are estimated by maximizing the log form of the partial

likelihood function, which is independent of the baseline hazard function. Table 3.4

shows the estimates B̂.23 In this table, we control for three covariates; in addition

23We use the Efron approximation to the exact-marginal method to deal with tied failures. Even
though the recorded data shows that some countries exited the NGE at the same t, they in fact
must exit one by one – and we do not know the exact order. For more details, refer to Kalbfleisch
and Prentice (2002b).
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to ovl and dev, we also control for the rate of inflation inf , which varies each year,

unlike the other two controls.

If the estimated coefficient of an indicator variable – like ovl or dev – is larger

than zero, it means that being in that group increases the probability of exit from the

depression. If negative, it reduces the probability of exit. Consider the meaning of

the coefficient on ovl, which is −0.780. Ignoring inf for the time being, the estimated

probability for a country to exit an NGE at time t is:

h (t|ovl, dev) = h0 (t) exp (−0.780ovl + .083dev)

Since ovl is a dummy variable, we have:

h (t|ovl = 1, dev) = h0 (t) exp (−0.780 + .083dev)

h (t|ovl = 0, dev) = h0 (t) exp (.083dev)

It follows that the relative hazard ratio between the two groups is:

Ĥ ≡ h(t|ovl=1,dev)
h(t|ovl=0,dev) = exp (−0.780)

= 0.458

Regardless of the level of development, the hazard rate is lower for the group with

ovl = 1. The probability of getting out of the negative growth episode for the group

with an HDE overlap is only 45.8 percent of depressions that do not coincide with any

high debt episodes. As we found earlier in the Kaplan-Meier analysis, the duration

of NGEs is usually longer for countries experiencing high debt. The coefficient is

statistically significant within the 1 percent confidence interval.

The income indicator variable dev appears to have no influence on the relative

hazard ratio. Although the estimated coefficient is positive at .083, it is small in

magnitude and not significantly different from zero. This result also accords with

what we found with the Kaplan-Meier analysis.

In the second column of Table 3.4 we add the inflation rate, inf . One of the

advantages of the Cox PH model is that it can handle time-varying covariates like
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inflation. The effect of inflation on the exit chance is positive and significant at the 1

percent level. Importantly, adding inf into the regression does not change the sign

or significance of ovl. The coefficient for inf is 0.497, so that increasing the inflation

rate by one unit, would be associated with an increased probability of exiting the

NGE of 64.4 percent. That is, e0.497 ≈ 1.644. A unit change in inflation, however, is

a huge increase since we measure inflation as the difference in the natural log of the

CPI. That means that a unit change is an increase by a factor of 2.718 in the CPI.

A more realistic exercise is to ask what happens if the inflation rate increases by

10 percentage points, the estimated hazard ratio is:

Ĥ(∆inf = .1) = e0.1×0.497 = 1.051

the corresponding probability of exiting the NGE increases by about five percent.

This is an interesting result. It is consistent with the story that when countries are

in depression, it helps to exit by expanding the money supply, which can lead to

inflation.

In the last column of Table 3.4 we replace the dummy variable ovl with the yearly

debt-to-GDP ratio (dgdp) as an alternative measure of indebtedness. The coefficient

for dgdp in column (3) is 0.003, which means that if the debt ratio were higher by 1

point (e.g. from 55 to 56) the probability of exiting the depression (the hazard rate)

would be only a bit larger:

Ĥ(∆dgdp = 1) = e0.003 ≈ 1.003

The hazard ratio for one unit change in dgdp is close to one and it is not statistically

significant. This result is consistent with the results found by Reinhart and Rogoff

(2010). A minor change in the debt level does not make an appreciable difference

in the probability of leaving a depression. Only if the debt to GDP ratio reaches a

threshold or higher (90 percent in this chapter), will it show connections with negative

economic activity. We also tried other thresholds. When the threshold equals 70
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percent, the coefficient for ovl is not statistically significant; however, if the threshold

equals 80 percent, the coefficient for ovl changes to be statistically significant within

a five percent confidence interval. These results are shown in Appendix I.

When we control for dgdp instead of ovl, we now find that the level of development

does matter. The hazard ratio between industrialized and developing countries is:

h(t|dev=1,dgdp)
h(t|dev=0,dgdp) = exp(0.654)

= 1.923

Industrialized countries, on average, have almost double the probability (92.3 percent

higher) of getting out of negative economic growth compared to developing countries

for each observed year. This number is much larger than the corresponding values in

Columns (1) and (2). This result is also statistically significant at the 5 percent level.

This may be the result of omitted variable bias. That is, if ovl matters and we omit it,

the coefficient on dev will be biased upward if ovl and dev are negatively correlated.

In fact, a simple OLS regression of dev on ovl produces a negative coefficient that is

significant at the 1 percent level.

The results from our small sample (with only NGEs for which HDE data is com-

plete) are very similar to those shown in Column(2) of Table 3.4. In fact, they are

stronger: ovl has a larger inverse effect on the hazard rate and its significance rises

to .1 percent. For this sample, the probability of exit is only 28 percent as large as

countries with ovl = 0 (in contrast to the large sample, where the relative probability

was 45 percent). The effect of inflation inf is likewise greater in absolute value and

more precisely estimated. Even dev becomes significant at the 5 percent level when

included with ovl – and its significance rises to .1 percent when dgdp replaces ovl.

3.6.2 Testing the Proportional Hazards Model

If the basic assumption of the PH model is satisfied, the hazard ratio – the ratio of

the hazard rate between two groups – should be constant over analysis time. In our
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case, this means that the probability of exiting the depression for the group that does

overlap with a debt episode should be in the same proportion – at all exit times – to

the probability of exit for the group that does not overlap. The reason is that the

component of these probabilities that depends on time h0 (t) – the baseline hazard –

is common to both and cancels out when the ratio is taken.

There are three common methods to test this hypothesis: a graphical, visual

analysis of survival functions; a visual analysis of Schoenfeld residuals, and a formal

test using Schoenfeld residuals. These tests are not straightforward, so we leave

the details to Appendix G. Here, we simply note that the tests indicate that it is

reasonable to accept the proportionality of hazards for our data.

Having established that the PH assumption is reasonable, we can assess the good-

ness of fit of our model. We rely on a visual test using the Cox-Snell residual method.

Leaving the details to an appendix (see Appendix H), the test suggests that our model

does fit the data well.

3.6.3 Discussion

In this section, we used the Cox Proportional Hazards model to test the association

between high debt episodes and depressions when controlling for the level of develop-

ment and inflation. We showed that depressions that overlap with an HDE tend to

be longer than those that do not. In fact, the hazard rate for the NGE with an HDE

overlap is only about half of that for NGEs without an HDE overlap. This result is

consistent with the results of the previous section where we used the Kaplan Meier

estimate. We also uncovered an effect that is quite robust in our data: higher infla-

tion is associated with shorter duration of negative growth episodes. On the other

hand, whether the country is industrialized or developing has a weak positive effect

on the duration of an NGE. This is most apparent when we use the small sample.
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3.7 Parametric Analysis

In this section, we use parametric models to analyze the survival experience of neg-

ative growth episodes. The main difference between the parametric model and Cox

PH model concerns the specification of the baseline hazard function h0(t). In the Cox

PH model (3.2), no assumption is made about h0 (t). Parametric models, however,

do require a particular form for the baseline hazard function.

Compared to the Cox PH model, parametric forms have certain advantages. When

the impact of a covariate is strong or the effect of a covariate has a strong time

trend, parametric models can be a sound alternate to the Cox model, since, if the

specification of the hazard function is correct, the parametric model will give more

efficient estimates (Klein and Moeschberger (2006)). If it is not correct, however, it

is best to use the Cox model. Meanwhile, conditional on choosing the correct form

for the baseline hazard function, this allows us to estimate the hazard function itself

and not just the relative hazard between two states of the world as defined by the

covariates in the model.

Three parametric models – that is, forms for h0 (t) – are analyzed in this section.

They are the Weibull, the exponential, and the Gompertz models. While there are

others, these three fit easily into the Proportional Hazard (PH) form – or “metric”

— which makes the results comparable with the Cox PH model. In fact, we will

compare the hazard ratios between the Cox and parametric models and reject the

parametric model if these hazard ratios differ by too great a margin.

Assume that baseline hazard function h0 (t) has the following form:

h0(t) = λtλ−1exp(β0) (3.3)

so that the complete hazard function has the form:

h (t) = h0 (t) eβ1x = λtλ−1eβ0eβ1x = λtλ−1e(β0+β1x) (3.4)
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where x is the covariate of interest, but there may be more than one covariate.

Covariates may change over time, as in the Cox PH model. This hazard function,

and the associated survival function S (t) and density function f (t) = S (t)h (t), form

the Weibull Model.

We estimate three parameters: the “shape” λ, the “scale” β0, and the coefficient

β1. If λ = 1, we have the Exponential Model, which is unrealistic in many situations,

including ours, since it means that the hazard function is constant over time. We have

already seen that the survival of depressions declines over time, so that the hazard

increases. This suggests that λ > 1, which we test below.

If the hazard function has the form:

h(t) = exp(γt)eβ0eβ1x (3.5)

with γ being constant, we have the Gompertz Model.

One advantage of parametric analysis is that the parameters can be estimated

using regular maximum likelihood. The maximum likelihood estimates of all three

PH metric forms are displayed in Table 3.5. The top part of Table 3.5 provides

estimated shape parameters for the Weibull, exponential and Gompertz models while

the lower part of Table 3.5 provides the estimated hazard ratios.

The results in the top two rows of Table 3.5 show the estimates of λ and γ

in the Weibull and Gompertz models – the exponential model simply imposes the

value λ = 1 on the Weibull model. For the Weibull model, the Wald test is for

H0 : ln(λ) = 0 – which is equivalent to testing whether or not λ = 1 — and it provides

a test statistic of 8.13. We can, therefore, reject the null hypothesis and conclude

that the hazard function is not constant over time. Furthermore, λ̂ = 2.016 > 0, so

the hazard rate is monotonically increasing over time. When we examine the results

for the Gompertz model, we come to the same conclusion: the Wald statistic is 5.46

and the estimate γ̂ = 0.073 > 0, meaning that the estimated hazard rate is also

monotone increasing. This is evidence that the Weibull and Gompertz models fit the
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data better than the exponential model, which is no surprise, since the exponential

model specifies that the baseline hazard function is independent of time. This is not

reasonable, given our earlier results.

We now discuss the hazard ratios eβ1 , which are comparable to those we found for

the Cox model. For the Weibull model, the relative hazard rate between the group

with ovl = 1 and that with ovl = 0 is 0.391 and it is statistically significant at one

percent. In words, countries that experienced an overlap with a high-debt episode

were only 39.1 percent as likely to exit the negative growth episode. The lower

probability of exiting represents a relatively longer duration of the negative growth

episode for the group with an overlap with an HDE. For the Gompertz model, the

story is very similar: the corresponding hazard ratio is 0.425, and it is also significant.

For the exponential model, the hazards rate for ovl = 1 is relatively higher at 0.621

and it is statistically significant only within five percent. The results, then, are

consistent across all the three models in Table 3.5. All indicate that consecutive

years of high public debt-to-GDP ratios do coincide with longer duration of NGEs.

These results provide support for the hypothesis in the other papers that high levels

of public debt are correlated with the longer economic downturns.

Recall that the result from the Cox PH model, Table 3.4 column (2) shows that the

coefficient for ovl is −0.899. And the corresponding hazard ratio is exp−0.899 = 0.407.

Thus the Cox PH Model gives results that are very similar to those of the Weibull

model and the Gompertz model, but not the Exponential model.

The level of development appears to make no difference in the relative probability

of escaping a depression. The hazard rate between industrialized and developing

countries is around 1.3 in all three models, but they are not statistically significant.

Inflation does matter, as in our other models. The hazard ratio is 1.775 for the

Weibull model and it is statistically significant within the one percent confidence

interval. If inflation rates increased by ten percentage points, the hazard rate would
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increase by 5.906 percent.24 The results are similar for the other two models. A high

inflation rate coincides with shorter duration of the economic depression.

To distinguish between the Weibull and Gompertz, we use the Akaike information

criterion (AIC) which is defined as:

AIC = −2× ln(L) + 2(k + c)

where k is the total number of covariates in the model, c is the number of the distri-

butional parameters and L is the estimated log likelihood. As reported in Table 3.5,

the Weibull Model provides the lowest AIC of 118.048. Thus, the Weibull Model is

selected to be best among the three parametric models considered.

Finally, we repeated this analysis with our small sample, using ovl2. Again, the

results are similar, but stronger in that the magnitudes of the hazard ratios are more

pronounced and they are more significant. In the case of the Weibull distribution,

the hazard ratio falls to .280 for ovl2 (from .391 for ovl). In our small-sample Cox

results, that hazard ratio was also .280. The hazard ratios for both dev and inf

are both over 2.00. As in our other results, inf remains highly significant, and even

dev becomes marginally significant with a p − value of .042. The estimated shape

parameter λ is above 2.0 and its log is highly significantly different from zero. The

Gompertz results are similarly stronger.

3.8 Conclusion

This chapter investigates whether consecutive years of high public debt-to-GDP ratios

are systematically associated with the duration of negative growth episodes (depres-

sions). It provides another way to look at the debt-growth nexus stimulated by the

work of Reinhart and Rogoff. Compared to the current literature, which analyzes the

24The effect is eβ∗∆π =
(
eβ
)∆π = 1.775.10 = 1.05906 , where ∆π is the change in the inflation

rate .
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relationship using yearly data, we focus on episodes when the countries experience

consecutive years of GDP decline. The dependent variable of interest is the duration

of long-term negative growth episodes instead of the magnitudes of changes in the

GDP growth rate. Using survival analysis, we demonstrate that episodes of high

public-debt ratios are associated with longer negative growth episodes – and may

cause them to be longer.

We also find that a higher inflation rate is associated with a shorter duration of

negative growth episodes. On the other hand, somewhat surprisingly, whether the

country is industrialized or not does not seem to matter as much for the length of time

they remain in economic depression – although the numbers of developing countries

that experience depression is much greater than the number of industrial countries

that fall into depression.

These results are consistent among all the survival analysis models we used: the

Kaplan-Meier non-parametric model, the Cox Proportional Hazards regression model,

and the parametric models: the exponential model, the Weibull model, and the

Gompertz model.

The relationship between public debt and economic activity is complicated. It is

natural to want to understand the nature of causality between the government’s debt

policy and the state of the economy, but there may be no single exogenous process

that can explain the relationship. Under certain conditions, the high debt may cause

slow growth; under others, the slow growth – caused by a third variable – may lead

to a higher debt path. In this chapter we have shown that there is good reason to

believe that prolonged periods of debt above a particular threshold are associated

with longer economic depressions. This may provide a rationale for moderating the

issuance of government debt in periods of economic uncertainty.
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Table 3.1 Kaplan-Meier Estimate for NGE

Time No. At Risk No. Exited Net Lost Survival Probability Standard Error [95% Conf.Int.]
4 141 14 1 0.901 0.025 0.838 0.940
5 126 24 2 0.729 0.038 0.647 0.795
6 100 13 0 0.634 0.041 0.549 0.708
7 87 11 2 0.554 0.042 0.468 0.632
8 74 11 0 0.472 0.043 0.386 0.552
9 63 3 0 0.449 0.043 0.365 0.530
10 60 12 0 0.359 0.041 0.280 0.440
11 48 4 0 0.330 0.040 0.252 0.409
12 44 3 0 0.307 0.040 0.232 0.386
13 41 5 0 0.270 0.038 0.198 0.346
14 36 4 0 0.240 0.037 0.172 0.314
15 32 6 0 0.195 0.034 0.133 0.266
16 26 1 0 0.187 0.034 0.127 0.257
17 25 5 0 0.150 0.031 0.096 0.215
18 20 1 0 0.142 0.030 0.090 0.207
19 19 4 0 0.112 0.027 0.066 0.172
21 15 3 0 0.090 0.025 0.049 0.146
22 12 2 0 0.075 0.023 0.038 0.128
23 10 2 0 0.060 0.021 0.028 0.109
24 8 4 0 0.030 0.015 0.010 0.070
25 4 1 0 0.023 0.013 0.006 0.059
27 3 2 0 0.008 0.008 0.001 0.038
43 1 1 0 0 . . .
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Figure 3.1 Kaplan-Meier Estimate: All Depressions
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Figure 3.2 Kaplan-Meier Estimates Comparison Between Groups
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Table 3.2 Median and Mean Survival Times

(a)Median Survival Times
(1) (2) (3) (4)

dev = 0 dev = 1 Total (ovl)

A: ovl = 0
t̂ (50) 8 6 8
CI [7, 10] [5, 10] [6, 10]
N 47 16 63

B: ovl = 1
t̂ (50) 15 7 15
CI [11, 17] [5, ..] [11, 17]
N 32 4 36

C: Total (dev)
t̂ (50) 10 6 10
CI [8, 13] [5, 10] [8, 11]
N 79 20 99

(b)Mean Survival Times
(1) (2) (3) (4)

dev = 0 dev = 1 Total (ovl)

A: ovl = 0
µT 9.47 9.22 9.38
CI [7.95, 10.98] [6.22, 12.22] [8.03, 10.74]
N 47 16 63

B: ovl = 1
µT 15.57 13 15.28
CI [12.83, 18.31] [5.97, 20.03] [12.72, 17.85]
N 32 4 36

C: Total (dev)
µT 12.00 10.04 11.59
CI [10.41, 13.60] [7.17, 12.92] [10.19, 13.00]
N 79 20 99
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Table 3.3 Significance Tests for Equality of Survivor
Function

(a) Full Sample
ovl Events Observed Events Expected
0 59 43.09
1 35 50.91

Total 94 94.00
Log-Rank Test Wilcoxon Test
χ2(1) = 13.80 χ2(1) = 15.15

Pr > χ2 = 0.002 Pr > χ2 = 0.0001

(b) Broken Down by Country Group
Industrialized Countries (dev = 1)

ovl Events observed Events expected
0 15 13.94
1 4 5.06

Total 19 19
Log-Rank Test Wilcoxon Test
χ2(1) = 0.36 χ2(1) = 0.68

Pr > χ2 = 0.548 Pr > χ2 = 0.408

Developing Countries (dev = 0 )
ovl Events observed Events expected
0 44 30.14
1 31 44.86

Total 75 75
Log-Rank Test Wilcoxon Test
χ2(1) = 13.64 χ2(1) = 14.41

Pr > χ2 = 0.002 Pr > χ2 = 0.0001

101



www.manaraa.com

Table 3.4 The Cox Proportional Hazard
Model

Variables (1) (2) (3)
ovl -0.780*** -0.810***

(0.227) (0.263)
dev 0.083 0.305 0.654**

(0.264) (0.292) (0.292)
inf 0.497*** 0.603***

(0.186) (0.188)
dgdp 0.003

(0.002)
Exits 94 76 75
N 1007 800 751

Standard Errors in Parentheses
*** p < 0.01 , **p < 0.05, *p < 0.10

Table 3.5 Parametric Regression Models

Weibull Exponential Gompertz

λ̂ = 2.016 λ = 1.00 γ̂ = 0.073
Wald = 8.13 Wald = 5.46

Covariate HR SE HR SE HR SE
ovl 0.391*** 0.099 0.621** 0.152 0.425*** 0.112
dev 1.425 0.413 1.226 0.354 1.392 0.406
inf 1.775*** 0.296 1.479** 0.238 1.641*** 0.264
AIC 118.048 160.733 138.165

*** p < 0.01; **p < 0.05, *p < 0.1
HR: Hazard Ratio; SE: Standard Error
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Chapter 4

Negative Growth and High Debt: An AFT

Parametric Survival Analysis Approach

4.1 Introduction

The general objective of this chapter and Chapter 3 is to analyze the duration of

economic crises and its association with the occurrence of consecutive years of high

public-debt-to-GDP ratios. In contrast to Chapter 3, five parametric survival analysis

models are utilized in this chapter. Moreover, in the previous chapter, I focused only

on the Kaplan-Meier estimate, Cox PH model, and the parametric models that have

the proportional hazard (PH) metric for the analysis. In this chapter, I use more

models and direct my attention to the use of those parametric models that have the

accelerated failure time (AFT) metric, including the exponential, Weibull, log-normal,

log-logistic and generalized gamma regression. Models in the PH metric, which are

used in the previous part, are useful as an analog to Cox PH model, but little attention

is paid to the actual failure time. The AFT metric emphasizes duration time itself

which is especially important when we have time-varying covariates.

Compared to the Cox PH model, full parametric models involve stronger assump-

tions. Thus, there exists a danger of misspecification. But for a finite sample, the

loss in precision from the Cox PH model can be large (Cox and Oakes (1984)). As a

result, it is useful to use the parametric model, in addition to semi-parametric mod-

els, to analyze economic crises. Based on Cox and Oakes (1984), one advantage of

the full parametric model is that it can provide more efficient parameter estimates if
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1) parameter values are largely different from zero 2) a strong time trend exists in

covariates 3) the follow-up of the observation depends on covariates. A comparison

among the five parametric models is made and two criteria are used to determine

which model provides the most efficient estimation.

The chapter is organized in the following way. Section 2 introduces the source of

the data. Section 3 compares the regression results using the five parametric models

which have the AFT metric. Section 4 adds different covariates to the log-normal re-

gression model and section 5 shows the regression results when using different thresh-

old values for the definition of HDE. And section 6 concludes the chapter.

4.2 Data

The dependent variable of interest is the duration of a “negative growth episode”

(NGE). It is generated based on the work of Breuer and McDermott (2013) and

constructed from the Penn World Table, version 9.0. These NGEs are severe eco-

nomic downturns and defined to be those episodes when the country has experienced

a cumulative decline in per capita output of 20 percent or more for at least four

consecutive years. 1

We wish to test whether a “high debt-to-GDP episode” (HDE), which is defined to

be a period lasting for at least four consecutive years during which the debt-to-GDP

ratio is at least 90 percent, is associated with an NGE. The data for public debt is

from the IMF’s Historical Public Debt Database (Abbas et al. (2011, 2013)). The

indicator variable ovl equals 1 when NGE = 1 and at least one year of the NGE

overlaps with an HDE; otherwise, it equals 0.

Two other initial covariates of interest are dev and inf. Variable dev is an indicator

variable showing the level of development for the country. For industrialized countries,

dev = 1; and for developing countries, dev = 0 (Source of data: World Bank). The

1Please see Chapter 3 for more detail.
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variable inf is the inflation rate from International Financial Statistics. Please refer

to the previous part of the dissertation for a more detailed explanation of these two

variables.

4.3 Parametric Models: AFT Metric

In the previous chapter, three full parametric models, the Weibull, the exponential,

and the Gompertz models that have the PH metric were discussed. In this section,

I will show five parametric models that have the AFT metric including Weibull,

exponential, log-normal, log-logistic, and generalized gamma regression models. The

Weibull and exponential models are the only two models which have both the PH and

AFT metrics; the log-normal, log-logistic, and generalized gamma regression models

only have the AFT metric; the Gompertz model does not have AFT metric, so it is

omitted in this section. For a detailed discussion regarding the difference between

the five models, please refer to Appendix J.

Let the observed exit time to be called tj (the observed duration of the negative

growth episode), then tj can be expressed as the product of a positive component

expXB and an error term εj which only takes positive values:

Tj = expXB ∗ εj (4.1)

where B is the coefficient matrix. Thus Equation (4.1) is one convenient and plausible

way to characterize the distribution of tj. And it can be linearized by taking the

natural log of each side of the equation, so that we have the following equation:

ln (Tj) = XB + ln (εj) (4.2)

Depending on what is assumed about the distribution of εj, we have different types

of AFT models.

With algebraic manipulation of Equation (4.1), we can get εj = exp−XB ∗Tj. The

term exp(−XB) is called the “acceleration parameter” (Mario Cleves and Marchenko
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(2016)) since its value determines the effect of covariates on the duration of survival

episodes. In AFT metrics, the effects of covariates are shown to decelerate or accel-

erate the speed of exiting NGEs.

If exp(-XB)>1, the country is expected to exit the NGE quicker; and if exp(-

XB)<1, it takes more time for the country to exit the NGE; if exp(−XB) = 1, time

passes normally. The results for the five models are shown in Table 4.1.

4.3.1 Exponential model

In the exponential model, we assume that

εj ∼ Exponential{exp(β0)}

That is, εj is assumed to be distributed as exponential with mean exp (β0).

Table 4.1 Column (1) provides the estimated coefficients for the exponential model.

These coefficients correspond to B in Equation (4.1). Therefore, the acceleration

parameter for ovl is exp(−0.477) = 0.621 < 1. For those NGEs that overlap with

an HDE (ovl = 1), they have longer durations in general compared to those with

ovl = 0. The effect of ovl is to slow down the time to exit the NGE. At the same

time, the estimated impact of inflation is to accelerate the time to exit the NGEs with

exp(0.391) = 1.478 > 1. However, the estimated coefficient of dev is not statistically

significant and the corresponding acceleration parameter is really close to one.

Parametric models written in the AFT metric are convertible to the PH metric

for both the exponential model and the Weibull model. For the exponential model,

the hazard ratio equals exp(−β̂AFT ) with β̂AFT being the coefficient estimated using

AFT metric and β̂AFT = −β̂HR where β̂HR is the coefficient estimated using the

proportional hazard metric. This can be confirmed by comparing the values in Table

5 in Chapter 3 with the results in Table 4.1 in this chapter. For example, the hazard

ratio for variable ovl in Table 5 equals 0.621. The estimated coefficient for ovl in Table

4.1 for the exponential model in this part equals 0.477 where exp(−0.477) = 0.621 .
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When using the exponential model, we explicitly assume the hazards are constant

over time which is probably unrealistic. Thus, in the following parts, I will use

alternative assumptions regarding the distribution of εj.

4.3.2 Weibull model

In the Weibull model, we assume that

εj ∼ Weibull{β0, λ}

That is, εj follows the Weibull distribution with two parameters (β0, λ) where λ is

called the shape parameter and as shown in the second row of Table 4.1, λ̂ = 2.016.

Based on the B coefficients estimated for the Weibull model in Table 4.1 Col-

umn (2), the effect of ovl is to slow down the time to exit the NGEs with the term

exp(−0.481) = 0.618 < 1 and it is statistically significant within 1 percent confidence

interval. At the same time, the impact of inflation is to accelerate the time to exit

and it is statistically significant within the 5 percent confidence interval. The esti-

mated coefficient of dev again, is not statistically significant with the corresponding

acceleration parameter exp(0.224) ≈ 1.251.

As mentioned above, coefficients estimated from the PH metric are transformable

with the coefficients estimated in the AFT metric with βAFT = −βPH
λ

for Weibull

model. And the corresponding hazard ratio equals exp(−λ̂β̂AFT ). This can be verified

by comparing the results in Table 5 in the Chapter 3 with the results in Table 4.1

in this part. For example, the hazard ratio for ovl in Table 4.1 equals exp(−2.016 ∗

0.481) ≈ 0.379 which is very similar to the value listed in Table 5 in the Chapter 3,

which equals 0.391.

4.3.3 Log-normal Regression

If εi ∼ lognormal(β0, σ) with two parameters β0 and σ, Equation (4.2) is called the

log-normal regression.
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The esitmation of σare listed in the second row of the Table 4.1 and σ̂ = 0.485.

Since the log-normal regression model will turn out to have the best fit, in Table 4.2,

we explicitly set out not only the coefficents, but also the acceleration parameters

for each individual variable. Coefficient for ovl as shown in Table 4.2 equals 0.491.

Its acceleration parameter exp(−0.491) = 0.612 is smaller than 1. Compared to

the group without high debt, the NGEs with an HDE overlap move at a slower

speed to exit the NGEs. The coefficient for inflation is −0.208, the corresponding

acceleration parameter exp(0.208) = 1.231. An increase in inflation is associated with

shorter duration of NGEs and the effect is statistically significant within the 5 percent

confidence interval. The coefficient for dev is −0.211 with exp(0.211) = 1.235. Higher

income levels are associated with shorter duration of NGEs, but it is not statistically

significant, which means whether the country is an industrialized country or not does

not matter for the duration of NGEs.

4.3.4 Log-logistic Regression

If εi ∼ loglogistic(β0, γ), then εj has log-logistic distribution with two parameters β0

and γ, and Equation (4.2) is called the log-logistic regression. In our model, γ̂ = 0.280

as shown in second row of Table 4.1.

For the log-logistic model, the way of interpretation is different from the other

models. Whether the effect of the covariate is accelerating or decelerating time can

be shown by using the median survival time. First of all, we set the survival function

for the log-logistic model

S(tj|Xj) = [1 + {exp(−β0 − xjβx)tj}
1
γ ]−1

to be equal to 0.5 and solve for t, the median survival time t50 for the log-logistic

model is:

t50(x, β, γ) = exp(β0 + xjβx)
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Then the time ratio (TR) at median evaluated at ovl = 1 versus ovl = 0 is:

T̂R(t50) = exp(β̂ovl) = 1.726

The exponentiated coefficient is the acceleration factor on the time scale. The median

survival time for the NGEs with high debt is 1.726 times of the other group. Expe-

riencing a high debt episode is associated with longer duration of the NGEs. The

coefficient for Inflation is −0.183, T̂Rinf (t50) = exp(−0.183) = 0.833. An increase in

inflation is associated with shorter duration of the NGEs.

4.3.5 Choosing among parametric models

Since there are many parametric models, the next question is which one provides the

most appropriate parametric model? The more frequent used standard in choosing

among different models is the Akaike information criterion (AIC): the best model

should be one with the lowest value of AIC which is given by:

AIC = −2× ln(L) + 2(k + c)

In this expression, k is the total number of covariates in the parametric model, c is the

number of the distributional parameters and L is the estimated log likelihood. That

is, c = 1 for exponential model, c = 2 for Weibull, log-normal and log-logistic models,

c = 3 for generalized gamma model. Our tests indicate that lognormal regression

model provides the lowest AIC 106.497.

Another way of making the selection is based on the results of the generalized

gamma model. For Equation (4.1), if εj ∼ GenGamma(β0, κ, σ), we have the gener-

alized gamma regression with three parameters β0, κ, σ, resulting in:

E{ln(tj|xj} = β0 + xjβx + E(uj)

where uj = ln(εj), E(uj) = σΓ(γ)√
γΓ′(γ) + ln(γ) with γ = |κ|−2 and Γ() being the gamma

function. The hazard function of the generalized gamma model is flexible and it can
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have many different shapes. If κ = 1 , the distribution is the same as the Weibull

function with the shape parameter λ = 1
σ
; if κ = σ = 1, the distribution is the

same as the exponential distribution; if κ = 0, it is the lognormal distribution. So

the generalized gamma model is often used as one standard to help us to choose the

most appropriate parametric model. Based on the regression results from Table 4.1,

κ̂ = −0.186. The Wald test statistic for the hypothesis that H0 : κ = 0 is z = −0.53

and significance level is 0.594 based on the estimation result. We fail to reject the null

hypothesis and the log-normal model is the one which offers us the most appropriate

regression results. Meanwhile, when checking the 95% confidence interval for κ, it

ranges between (−0.872, 0.500) which rules out the value of 1 but includes 0. Thus,

the results of generalized gamma regression suggests the log-normal model provides

a better fit when compared with the Weibull model. Both the AIC standard and the

generalized gamma regression point to the lognormal regression model to be the best

among all survival analysis models used.

4.3.6 Post estimation of log-normal regression model

Figure 4.1 presents the predicted log-normal hazard functions, which provide the in-

stantaneous probability of exiting the NGEs. Note that the predicted hazard function

h(t|x) can be obtained even for models which have only the AFT metric; however,

the h(t|x) may not have a PH decomposition and cannot be written in the PH form

h0(t)exp(XB). Figure 4.1 provides hazard functions of four different groups based

on whether they belong to an industrialized country or an emerging market economy

and whether the NGEs encounter HDE while assuming the inflation rate is at its

mean. The general shapes of the hazard functions for developing and industrialized

countries are the same in that the hazard functions are increasing first, reaching peak,

and then decreasing. The differences exist in: industrialized countries take more time

to reach the peak turning point and the slope of the negative part is much flatter. In
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the following section, more analysis will be done using the log-normal regression.

4.4 More Covariates in the Log-normal Regression Model

4.4.1 Description of Additional Covariates

In this part, I use the log-normal regression model to see if our original results are

robust to the addition of covariates in four categories: 1) economic variables, 2)

political variables, 3) financial crisis variables, and 4) cultural variables. The selection

of these covariates is similar to those used by Breuer and McDermott (2013). The

intention is to control for other variables that have been shown to be important to long

run economic development. The 20 additional covariates used are all listed below:

1. Civil Liberties: This index ranges from 1 to 7 with 7 representing the largest

degree of freedom. Source: Freedom house

2. Democracy: This index ranges from 1 to 10 with 10 denoting the highest

degree of institutional democracy. Source: Polity IV

3. Constraint on the Executive Power: This index ranges from 1 to 7 with 7

representing the largest degree of constraint. Source:Polity IV

4. Civil War: This is a dummy variable with its value equal to 1 when the negative

growth episode encounters civil war. Source: Correlates of War Database.

5. Autocracy: This index ranges from 1 to 10, higher value represents higher

degree of the autocracy within the country. Source: Polity IV

6. Political Rights: This index ranges from 1 to 7 with 7 representing the largest

degree of political rights. Source: Freedom house
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7. Ethnic fractionalization: This indicator shows the degree of concentration for

different ethnolinguistic groups within a country, ranges from 0 to 1. Source:

Alesina et al. (2003)

8. Religious fractionalization: This indicator denotes the degree of concentration

for different religious groups within the country, ranges from 0 to 1. Source:

Alesina et al. (2003).

9. Trust: This value is based on the answer to the question “Generally speaking,

would you say that most people can be trusted or that you need to be very

careful in dealing with people?” Higher value of Trust means more proportion

of people selected “most people can be trusted. Source: Question A165, World

Values Survey.

10. Ethnic Polarization: This is a measure of concentration of ethnolinguistic groups

within a country; If there are two groups within a country, its value reaches the

maximum. Source: Montalvo and Reynal-Querol (2005)

11. Religious Polarization: Religious polarization is a measure of concentration of

religious groups within a country; If there are only two groups within a country,

its value reaches the maximum. Source: Montalvo and Reynal-Querol (2005)

12. Attitude toward Government Responsibility: This value ranges from 1 to 10

with 1 representing “People should take more responsibility” and 10 represent-

ing “The government should take more responsibility”. Response is averaged

over individuals across all the available waves for each countries. Source: Ques-

tion E037 World Values Survey.

13. Confidence in the Justice and Court System: Confidence is a index with the

value ranging from 1 to 4 based on the answer to the question “how much

confidence do you have in the justice system”. The value 1 represents “no
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confidence at all” and 4 represents “a great deal”. Source:Question E069_17

World Values Survey.

14. Latitude: Latitude is the distance from the equator (Porta et al. (1998)).

15. Banking Crisis: This is a dummy variable which equals 1 when the events

such as “bank closure, merger, or takeover by the public sector or larger scale

government assistance” happen. Source: Laeven and Valencia (2008)

16. Currency Crises: This is a dummy variable which equals 1 when the country

experiences “the nominal depreciation of the currency of at least 30 percent

that is also at least a 10 percent increase in the rate of depreciation compared

to the year before”. Laeven and Valencia (2008)

17. Openness: This value is the ratio of sum of import and export to the total GDP.

It is from Penn World Table 7.0.

18. Liberalization: This is an indicator ranges between 0 and 1, and it is retrieved

from Wacziarg and Welch (2008).

19. Population: it is in millions and collected from United Nations.

20. The natural logarithm of real GDP per capita: It is from Penn World Table

9.0.

4.4.2 Robustness Check

To maintain degrees of freedom, for each regression, I only add one new covariate

each time. The results for the log-normal regression model shown in Tables 4.3, 4.4,

4.5, and 4.6 are to be compared with the results in Table 4.1 to verify whether the

association between ovl and the country’s resilience ability from economic depression

has changed after adding these different controls.
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Comparing results in Table 4.3, 4.4, 4.5, and 4.6 with the results in Column (1)

of Table 4.1, I have found that the association between NGE and HDE remains even

though many different controls were added. I, thus, obtain the conclusion that the

existence of high debt episodes is associated with longer depressions, whereas higher

inflation is associated with shorter depressions. The magnitude of the estimated co-

efficients for ovl are similar to the results in Column (1) of Table 4.1. The association

between debt level and the resilience of the country is not hampered by other factors

existing in the world.

Table 4.3 presents the estimation results when I insert economic variables, one at

a time: openness, liberalization, population, and ln(Real GDP). Variable openness

is defined as Import+Export
GDP

which is gathered from Penn World Table 7.0 and the

estimated coefficient is −0.003. The corresponding acceleration parameter equals

exp(0.003) ≈ 1.003 which approximates one but higher than 1, meaning the higher

degree of exposure to world trade accelerates the speed the country to exit the eco-

nomic depression. The Row titled “No. Subjects” equals 75 which represents that we

have 75 HDEs within the regression, and 69 in the Row titled “No. Exits” represents

we have 69 HDEs that exited the episode normally, and the remaining 75 − 69 = 6

HDEs were censored.

Another covariate liberalization, an indicator ranges between 0 and 1, is re-

trieved from Wacziarg and Welch (2008). Compared to the covariate opennness,

liberalization measures not only the degree of trade openness, but also takes into

account monetary and fiscal policies together with the existence of state monopoly

within the country. So liberalization reflects the degree of economic freedom within

the country. I expected the association between the trade liberalization and duration

of NGEs to be negative. That is, higher degree of liberalization should be coincident

with better performance of the economy (Wacziarg and Welch (2008) and Bekaert

et al. (2005)). The estimated result turns out to be as I expected, the coefficient
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equals −0.435, with the corresponding acceleration parameter to be 1.545, showing

that higher degree of economic liberalization is associated with shorter duration of

economic depression in general. The impacts of the two variables mentioned above

are evident within 95 percent confidence interval.

The impact of population on economic growth is controversial. Based on the

study of Peterson (2017), lower population growth in industrialized countries would

create economic problems while high population growth in developing countries would

have negative impact on economic development. In this study, population shows no

association with the duration of NGEs with its estimated acceleration parameter ap-

proximating 1 and there is no statistical significance. The estimated coefficient for

output per capita in the form of ln(Real GDP per capita) is 0.042 and the corre-

sponding acceleration parameter is exp(−0.042) = 0.959. Thus, the magnitude of the

negative association is close to one and there is no statistical significance.

Table 4.4 presents the results when controlling for the political environment, in-

cluding civil liberties, democracy, constraint on executive power, an indicator for civil

war, autocracy, and political rights. The coefficient for civil liberties equals −0.076

and the corresponding acceleration parameter is 1.078. It is statistically significant

within 10 percent confidence interval. A higher degree of civil liberties is associated

with shorter duration of NGEs. Meanwhile the coefficient for autocracy equals 0.035

and it is statistically significant within 5 percent confidence interval. This means

higher autocracy is associated with lower resilience ability for the country to exit

the NGEs. These results are the same as many of the current researches which

associate better economic performance with better institutional quality(Chong and

Calderon (2000),Butkiewicz and Yanikkaya (2006)). Meanwhile Table 4.4 also show

that democracy etc have no effect.

Table 4.5 examines the impact of cultural factors, including latitude, ethnic frac-

tionalization, religious fractionalization and trust. Besides that, we also use ethnic
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polarization, religious polarization, attitude toward government responsibility and

confidence in the justice and court system. The data for the cultural variables are

limited. Some variables only have 1 observation for each country across the sample

period. Thus, I assume that the cultural factors are constant for each country by

using averages of all available observation for each country.

Variable latitude is the distance from the equator (Porta et al. (1998)) to the

country of analysis. It helps capture the initial conditions of human capital and

perhaps ethnic and climatic difference. The coefficient for latitude is −0.052, and

the corresponding acceleration parameter is exp(0.052) = 1.053. However, there is

no statistical significance. Thus, we fail to prove that latitude is associated with the

resilience ability of the country to get out the negative growth episode.

Actually, except for ethnic fractionalization and attitude, all the other cultural

variables included show no statistical significance within our regressions. Although

not significant, all of the coefficients are positive. Ethnic fractionalization, religious

polarization, ethnic polarization and religious polarization are ways of examining so-

cial conflict. The difference between fractionalization and polarization is the value of

the fractionalization increases as we have more number of groups within the country

while the value of polarization maximizes when we have only 2 groups within one

country. The coefficient for ethnic fractionalization is 0.634 and the acceleration pa-

rameter is 0.530. Thus a higher value of religious fractionalization is associated with

longer duration of NGEs. Thus this provides some evidence that higher potential

social conflict has a negative impact on the ability of the country to get out of a

depression. This result is similar to Easterly and Levine (1997) who find that ethnic

fractionalization in Africa explains a large part of the difference in the public policies

used which have an impact on the economic growth of the country.

Three variables including trust, confidence in the justice system and the attitude

toward government responsibility are generated based on the survey answers from
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the World Value Survey. Trust is a form of social capital. Low trust is proved to

be associated with lower growth. Confidence in the justice and court system reflect

the reliability that property rights and liberties can be protected. Attitude towards

government responsibility reflect degree of preference toward government welfare.

The coefficient for “attitude” equals 0.154 with 10 percent confidence interval. It

means that if the people in the country believe that government should take more

responsibility, then the NGEs would be longer.

In Table 4.6, two types of crises including currency crises and bank crises are

examined to determine if they affect the resilience of a country’s ability to escape

from depression. bank crises is a dummy variable, its value equals 1 when either

closure, merger or government intervention occurs to the financial institutions. This

variable is from Laeven and Valencia (2008). Both of the crises mentioned fail to find

any association with the duration of NGEs.

4.5 Other Threshold Value for HDE

In this part, I do a robustness check by running the the log-normal regression model

again using two alternative threshold values for the definition of the high debt episode,

70 percent and 80 percent. The results are shown in Table 4.7. The coefficient for

ovl70 equals 0.178 and there is no statistical significance; Coefficient for ovl80 equals

0.357 and it is statistically significant within one percent confidence interval. The

coefficient for ovl when we use 90 percent as threshold value shown in Table 4.2 equals

0.491. Thus, when we use higher threshold value of 80 percent, the magnitude of the

coefficient is similar to when we use the threshold value of 90 percent. The key claim

from Reinhart and Rogoff (2010) is that countries having debt above 90 percent

of GDP have poor economic performance, compared to others. In this chapter, a

threshold value for high debt is thus supported; it may differ among countries, but

appears to be over 80 percent.
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4.6 Conclusion

This chapter investigates whether consecutive years of high public-debt-to-GDP ra-

tios are systematically associated with the duration of negative growth episodes (de-

pressions) using parametric analysis, including the exponential model, Weibull model,

log-normal model, log-logistic model and generalized gamma model, all of which have

the form of accelerated failure time (AFT) metric. Using these five full parametric

analysis models, I demonstrate that episodes of high public-debt ratios are associated

with longer negative growth episodes; a higher inflation rate is associated with shorter

duration of negative growth episodes. Regardless of a country is being industrialized

or not, it does not matter for the length of time the country remains in an economic

depression. These results are consistent among all the survival analysis models I used.

Comparison among different models shows the lognormal model is the most desirable.

To add further robust checks, I employ 20 different covariates, including economic

factors, political factors, cultural factors and financial crises factors, one-at-a-time, to

the original lognormal regression model. My main results were not refuted by adding

these covariates as additional controls.
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Table 4.1 Parametric Regression Model-AFT Metric

Exponential Weibull Log-normal Log-logistic Generalized Gamma
λ = 1 λ̂ = 2.016 σ̂ = 0.485 γ̂ = 0.280 σ̂ = 0.479

κ̂ = −0.186
Covariate Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE

ovl 0.477* 0.245 0.481*** 0.122 0.491*** 0.121 0.546*** 0.125 0.481*** 0.122
dev -0.204 0.289 -0.224 0.143 -0.211 0.142 -0.232 0.152 -0.224 0.143
inf -0.391** 0.161 -0.195** 0.094 -0.208** 0.091 -0.183** 0.075 -0.195** 0.094
β̂0 2.258*** 0.184 2.423*** 0.095 2.161*** 0.090 2.136*** 0.090 2.120*** 0.117
AIC 160.733 118.048 106.497 109.146 108.209

*** p < 0.01; **p < 0.05, *p < 0.1
SE: Standard Error

119



www.manaraa.com

Table 4.2 Acceleration Parameter for the Lognormal
Model

Covariate Lognormal
Coefficient Acceleration parameter

ovl 0.491*** 0.612
dev -0.211 1.235
inf -0.208** 1.231
β̂0 2.161*** 0.115

No. Subjects 80
No. Failures 74

*** p < 0.01; **p < 0.05, *p < 0.1

Table 4.3 Log-Normal Regression with Economic
Factors

Coefficients X = openness X = liberalization
ovl 0.531*** 0.536***
inf -0.212** -0.184**
dev -0.100 -0.022
X -0.003** -0.435**

No. Subjects 75 77
No. Exits 69 69

σ̂ 0.465 0.456

Coefficients X = population X = ln(Real GDP)
ovl 0.497*** 0.520***
inf -0.207** -0.211**
dev -0.206 -0.296
X 0.00017 0.042

No. Subjects 81 81
No. Exits 76 76

σ̂ 0.485 0.486
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Figure 4.1 Hazard Function From
Log-normal Post Estimation

Table 4.4 Log-normal Regression Results with Political Factors

Coefficient X = civil Liberties X = democracy X = cons.exec
ovl 0.527*** 0.524*** 0.524***
inf -0.201** -0.201** -0.203**
dev -0.077 -0.108 -0.119
X -0.076* -0.025 -0.035

No. Subjects 76 75 75
No. Exits 68 67 67

σ̂ 0.460 0.464 0.464

Coefficient X = civil War X = autocracy X = political rights
ovl 0.567*** 0.534*** 0.549***
inf -0.217** -0.193** -0.196**
dev -0.174 -0.174 -0.079
X 0.053 0.035** -0.040

No. Subjects 77 75 76
No. Exits 70 67 68

σ̂ 0.469 0.464 0.464
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Table 4.5 Log-normal Regression Results with Cultural Factors

Coefficient X = latitude X = ethnic frac. X = religious frac.
ovl 0.586*** 0.492*** 0.583***
inf -0.211** -0.167* -0.194**
dev -0.084 0.020 -0.092
X -0.052 0.634** 0.030

No. Subjects 77 75 76
No. Exits 69 68 68

σ̂ 0.478 0.461 0.481

Coefficient X = trust X = religious polar. X = ethnic polar.
ovl 0.385** 0.599*** 0.619***
inf -0.198** -0.230* -0.233**
dev -0.186 -0.223 -0.237
X 0.890 0.106 0.122

No. Subjects 38 65 65
No. Exits 36 58 58

σ̂ 0.453 0.443 0.443

Coefficient X = confidence X = attitude
ovl 0.408** 0.347*
inf -0.108 -0.212**
dev -0.289 -0.224
X 0.416 0.154*

No. Subjects 36 38
No. Exits 34 36

σ̂ 0.447 0.444

Table 4.6 Log-normal Regression Results with
Financial Crisis

Coefficient X = currency crises X = bank crises
ovl 0.590*** 0.585***
inf -0.207** -0.223**
dev -0.088 -0.083
X -0.109 0.238

No. Subjects 76 76
No. Exits 68 68

σ̂ 0.477 0.474
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Table 4.7 Lognormal Model with
Other Thresholds

Covariate ovl70 ovl80
ovl 0.178 0.357***

(0.134) (0.124)
dev -0.282* -0.262*

(0.158) (0.149)
inf -0.238** -0.223**

(0.105) (0.0978)
β̂0 2.267*** 2.196***

(0.120) (0.0999)
σ̂ 0.532*** 0.510***

(0.044) (0.043)
No. Subjects 81 81
No. Exits 76 76
*** p < 0.01; **p < 0.05, *p < 0.1

Note: Standard errors in parentheses.
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Appendix A

Terminology for Survival Analysis

Survival analysis is the modeling of data where the outcome variable of interest is

the time to occurrence of an event of interest. We usually call the event of interest

to be the “failure event” even though it may not necessary to be a real failure. For

example, survival analysis was applied to check the probability of default on debt on

a given future time period for individual credit card applicants (Bellotti and Crook

(2009)). In this case, the failure event refers to the action that the applicants default

their credit cards. There are also papers using survival analysis to check the duration

of fiscal crises (Ekanayake (2016)). In this scenario, the failure event is the end of

the fiscal crises. In my paper, one of the outcome variables of interest is the duration

of the high debt episode. The fail event refers to the last year of high debt episode.

Thus I call the corresponding “failure” in my paper to be “exit”. Correspondingly,

the onset of the risk is the first year when the country starts a high debt episode.

Compared to other statistical methods, survival analysis yields good estimates of

parameters when the data includes observations with censoring or truncation.

A.1 Survival Function and Hazard Function

Survival analysis has some unique statistical terms. If we have a non-negative random

variable T to represent the time to the exit event, the cumulative distribution function

can be retrieved:

F (t) = Pr(T ≤ t)
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F(t) shows the probability that a subject, selected at random, has a survival time

less than or equal to time t. The derivative of function F (t) is the probability density

function f(t) telling us the probability of surviving at time t. These two descrip-

tive statistics are widely used in the standard economic models. However, survival

analysts talk more about the reverse cumulative distribution function-the survival

function which is the probability of surviving beyond time t, denoted:

S(t) = Pr(T > t)

S(t) is the probability that there is no exit event before time t. For example, in

my paper, S(t) refers to the probability that the duration of high debt episode will

be longer than time t. When t = 0, then S(0) = 1 and the value of S(t) decreases

towards zero as time t goes to infinity. The survival functions are monotone, non-

increasing. This is to say that eventually every object is going to fail (die); what

matters is how long it takes. The sum of survival function and its corresponding

cumulative distribution function is one:

S(t) = 1− F (t)

Survival analysis has three different forms - nonparametric, semi-parametric and para-

metric. The difference among them are depending on how we assume the form of

survival function and how covariates affect the survival experience.

Another important statistical value frequently used in survival analysis is the

hazard function, h(t), which is the instantaneous rate of failure. It is the limiting

probability that the failure event occurs in a given interval, conditional upon the

subject having survived to the beginning of that interval, divided by the width of the

interval.

h(t) = lim∆t→0
Pr(t+ ∆t > T > t|T > t)

∆t = f(t)
S(t)

The hazard rate ranges from zero to infinity. When the value is zero, it represents no

risk at all and when it equals to infinity, it represents a failure at that moment is going
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to happen for sure. The corresponding cumulative hazard function H(t) measures

the total amount of risks that have been accumulated up to time t.

H(t) =
ˆ t

0
h(u)du (A.1)

Applying the above definition to my paper and assuming that t = 4, the value of

F (4) is the probability that a country experiencing a high debt ratio, has a high debt

ratio lasting for less than or equal to four years. The value of f(4) is the possibility

of a country to remain in the state of high debt ratio after four years of experiencing

high debt ratio. The value of S(4) is the possibility of the country to have the high

debt ratio lasting for more than four years. Finally h(4) is the possibility that the

country exits the high inflation episode after 4 years of being in that episode.

A.2 Median and Mean

The median time, T, statistically is the halfway point. Half of the population has

a value larger than T and half of the population has a value smaller than T. In

the survival model, the median exit time µ̃t is the 50th percentile of the exit time

distribution with t50 = µ̃T . It represents the moment beyond which 50% of subjects

are expected to survive:

S(µ̃T ) = 0.5

The presence of censored observations makes it impossible to get the mean or median

survival time using standard methods. For example, in order to get median survival

time using the standard method, we need to sort the data and find the middle one as

the median. With the existence of censored data, it is impossible to make sure that

the order is correct. Instead, we can obtain the median by calculating the survival

probabilities. In the case of no censored observations, the median survival time is the

middle observation of the ranked survival times.
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The mean time to exit, µt, is defined as:

µT =
ˆ ∞

0
tf(t)dt
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Appendix B

Results for HDE90 with HIF10

This part shows the analysis results when using the threshold value of 90 percent for

HDE.
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Table B.1 Log-Rank test for HDE90

(a)Group by HIF10

Y HIF10 Events observed Events expected

0 35 35.38
1 28 27.62

Total 63 63
χ2(1) = 0.01

Pr > χ2 = 0.917

(b)Group by OECD

OECD Events observed Events expected

0 56 52.33
1 5 8.67

Total 61 61
χ2(1) = 2.09

Pr > χ2 = 0.148

Table B.2 Median and Mean Survival Time for HDE90

(a)Median Survival time for HDE90
Y HIF10 No. of subjects 50% Std. Err. [95% Conf. Interval]
0 43 8 0.653 7 17
1 29 10 1.076 8 16
Total 72 10 1.091 7 14

(b)Mean Survival time for HDE90
Y HIF10 No. of subjects Mean Std. Err. [95% Conf. Interval]
0 43 12.849 1.517 9.877 15.821
1 29 13.086 1.288 10.561 15.611
Total 72 12.889 1.016 10.899 14.880
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Table B.3 Median and Mean Survival Time for HIF10

Median Survival time for HIF10
Y HDE90 No. of subjects 50% Std. Err. [95% Conf. Interval]
0 101 5 0.301 5 6
1 30 8 0.913 6 11
Total 131 6 0.376 5 7

Mean Survival time for HIF10
Y HDE90 No. of subjects Mean Std. Err. [95% Conf. Interval]
0 101 7.634 0.502 6.651 8.617
1 30 10.167 0.979 8.248 12.085
Total 131 8.213 0.456 7.319 9.108
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Table B.4 Log Rank Test for HIF10

Y HDE90 Events observed Events expected

0 98 87.43
1 30 40.57

Total 128 128
χ2(1) = 5.22

Pr > χ2 = 0.022
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Appendix C

Log-Rank Test and Wilcoxon Test

In this section, we present a brief discussion regarding to the difference between the

Log-rank test and Wilcoxon test. Both tests can be used to test for the equality of

survivor functions across different groups for the Kaplan-Meier estimate; however,

they are different in a minor way, which turns out to have different powers for testing

the equality. To begin the discussion, we make up stories regarding the frequency

of events happened in two different groups as shown in Table C.1. Suppose that we

have two group of observations, group 1 and group 0. The total number of subjects

at risk at observed survival time ti is ni, and there are n1i subjects at risk in group 1

and n0isubjects at risk in group 0. And among the n1i subjects in group 1, there are

d1i exit events observed and the remaining n1i−d1i are called the “Not Exit Events”;

Similarly, among the n0i subjects at group 0, there are d0i exit events and n0i − d0i

“Not Exit Events”. The total number of deaths within both groups is di.

The total number of “Exit Event” is obtained by assuming that the survival

function is the same in each of group 1 and group 0. For example, the estimator for

group 1 is

ê1i = n1idi
ni

(C.1)

Then the estimator for the variance of d1t is defined as follows:

v̂1i = n1in0idi(ni − di)
n2
i (ni − 1)
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The general form for the test statistics is defined as a ratio of weighted sums over

the observed survival times:

Q = [∑m
i=1wi(d1i − ê1i)]2∑m

i=1wiv̂1i

The value of wi is weight which depends on the specific test. Under the null

hypothesis that the survival functions are the same across two groups and the survival

experience is independent to each other, the p-value can be obtained by using the

chi-square distribution with one degree of freedom (p = pr(χ2(1)) ≥ Q).

When the value of wi = 1, the test is often called the Log-rank test which puts

more weight on the larger values of time. When the weights are equal to the number

of subjects at risk at each survival time, wi = ni, this test is called the Wilcoxon test.

It puts more weight on differences between the survival functions at smaller values of

time.

Table C.1 Test of Equality of Survival
Functions in Two Groups

Event/Group 1 0 Total
Exit Events d1i d0i di

Not Exit Events n1i − d1i n0i − d0i ni − di
At Risk n1i n0i ni
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Appendix D

Computation of Survival Analysis

D.1 Maximum Likelihood

The use of maximum likelihood is to choose parameters to maximize the likelihood

that matches the model for the observed data. When the disturbances of the model

are not normally distributed, the most efficient estimators are the maximum likelihood

estimators, at least asymptotically. Survival analysis uses maximum likelihood to get

the parameters of interest.

The first step is to build up the maximum likelihood function L, which is an

expression that shows the probability of observed data under the model.

In the following explanation, I will use the the duration of high inflation episode

as an example. When we have F (t, β, x) with t = 5, x = 1,1 the value of this

cumulative distribution function gives the probability of an OECD country to have a

high inflation episode less than or equal to 5 years. Thus the value of S(5, β, 1) gives

the proportion of an OECD country expected to have at least 5 years of continuous

high inflation.

When the observation is right censored, we know nothing about the exact time

when the high inflation episode is going to end. However, we know about the prob-

ability of surviving for t years when the observation is censored. Thus we can use

S(t, β, x) to approximate the probability. Meanwhile, to get the maximum likelihood

function, we need the probability of the moment surviving when the observation is

1x is dummy variable and x = 1 if the country is a member of the OECD countries; x = 0 if
not.
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not censored. f(t, β, x) gives the probability when the survival time is exactly t.

Under the assumption of independent observations, the full likelihood function

is obtained by multiplying the respective contributions of observed triplets, a value

of f(t, β, x) for a non-censored observation and a value of S(t, β, x) for censored

observation.

[f(t, β, x)]c × [S(t, β, x)]1−c

c equals to 0 if the data is censored and equals to 1 if not censored.

Under the assumption that the observations are assumed to be independent, the

likelihood function is the product of the expression in the above equation over the

entire sample and is shown as follows:

l(β) =
n∏
i=1

{
[f(ti, β, xi)]ci × [S(ti, β, xi)]1−ci

}
To obtain the parameter of interest, β, we maximize the log-likelihood function:

L(β) =
n∑
i=1
{ciln[f(ti, β, xi)]× (1− ci)[S(ti, β, xi)]} (D.1)

D.2 Proportional Hazards Models-Likelihood Calculation

Based on Cox(1972), the hazard rate at time tfor a subject whose covariate is x is

given by:

hi(t) = h0(t) ∗ exp{β1xi1 + β2xi2 + ...+ βkxik} (D.2)

h0(t) is called the baseline hazard function which can be any complicated function of

t as long as h0(t) ≥ 0 and its functional form with time is not specified in the model.

The remaining part of the hazard function hi(t) involves an exponential function of

covariates and it does not depend on time. Thus the hazard ratio between any two

subject at tth analysis time is:

hi(t)
hj(t)

= h0(t) ∗ exp{β1xi1 + β2xi2 + ...+ βkxik}
h0(t) ∗ exp{β1xj1 + β2xj2 + ...+ βkxjk}

= exp{β1(xi1 − xj1) + ...+ βk(xik − xjk)}
(D.3)

141



www.manaraa.com

And β in the above equation is to be estimated from the maximum likelihood esti-

mation. Now assume that we have no tied event, which means that each episode of

high debt episode in the sample has a at different time slot.

The probability that a country gets out of the high debt episode is calculated by

dividing the hazard for the country to exit HDE by the sum of all the hazards for all

the countries who are under high debt episode. And the partial likelihood function

is the product of the likelihoods for all the countries in the sample assuming that the

HDE events for the countries are independent of each other:

PL =
n∏
j=1

Lj (D.4)

PL represents “partial likelihood” and Lj is the likelihood for the jth event.

If an event occurred at 5th month, the Lj could be written as

Lj =
(

h0(5)exp{βxi}
h0(5)exp{βxi}+ h0(5)exp{βxi+1}+ ...+ h0(5)exp{βxn}

)ci
(D.5)

with ci = 1 if the country exits the HDE and ci = 0 if censored (HDE ended just

because it is the last year of the sample). h0(t) can be cancelled out in the above

equation.

Li =
(

exp{βxi}
exp{βxi}+ exp{βxi+1}+ ...+ exp{βxn}

)ci
(D.6)

The hazards included in the denominator are only those individuals who are at risk at

the ith event (or censoring) time. And the entire likelihood function can be expressed

very concisely as

PL =
n∏
i=1

(
exp{βxi}∑n
tj≥t exp{βxj}

)ci
(D.7)

The partial maximum likelihood estimate of β can be obtained by maximizing the

log form of above equation with respect to β.
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Appendix E

Handling Tied Data

In the above explanation, we assume that we know the exact ordering of the failure

events and the failure events happened one by one. However, in the real life, we

frequently come across scenarios when we have ties. For example, in our sample, in

the 6th year of analysis time, different countries were in the last year of the HDE. That

is, based on the limitation of data, we have no information about the exact timing of

which country exited HDE earlier compared to other counties. However, in the Cox

regression, the ordering of the failure event is important to the calculation of partial

likelihood function. When we face ties, we need special treatment. In the following

paragraph, I will use an example to better show you the different approximation

methods used.

Based on the Table E.1, the second and third patient have the same survival

times. The partial likelihood function is L(β) = L3(β)4(β)L5(β) which is based on

the failure time shown in the sample at time 3, 4, 5. Failure happened at time 2 is

censored data, so it is not included in the partial likelihood calculation. And L4(β)

Table E.1 An Example of Ties for Cox PH model

Patient Failure time Failure or Censored x
1 2 0 x1
2 3 1 x2
3 3 1 x3
4 4 1 x4
5 5 1 x5
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and L5(β) can be written as:

L4(β) = ex4

ex4 + ex5

L5(β) = ex5

ex5
= 1

Now the calculation of L3(β) needs some special treatment based on different assump-

tion used. In the following paragraphs, four different approximations are introduced.

The Exact-Marginal calculation Since L3(β) =P[observe two failure at time

3]=P[A2+A3] assuming failure event happened to patient 2 and 3 are independent to

each other. Thus we can have:

L3(β) = P [A2] + P [A3]

Both patient 2 and 3 failed at time 3. However, they did not really fail at the exact

same time, we were just limited to the information we have. Thus we can assume

P [A2] is the probability that patient 2 failed first and then comes the patient 3. Then

we can have

P [A2] = ex2β

ex2β + ex3β + ex4β + ex5β
× ex3β

ex3β + ex4β + ex5β
(E.1)

P [A3] = ex3β

ex2β + ex3β + ex4β + ex5β
× ex2β

ex2β + ex4β + ex5β
(E.2)

The above method is called the exact-marginal method for the estimation of β.

Breslow’s approximation The exact-marginal is computationally intensive. So

we can use the Breslow’s approximation (Breslow (1974)) to deal with ties:

ex3β

ex3β + ex4β + ex5β
≈ ex3β

ex2β + ex3β + ex4β + ex5β

so

P [A2] = ex2β

ex2β + ex3β + ex4β + ex5β
× ex3β

ex2β + ex3β + ex4β + ex5β
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Meanwhile:
ex2β

ex2β + ex4β + ex5β
≈ ex2β

ex1β + ex2β + ex3β + ex4β + ex5β

P [A3] = ex2β

ex2β + ex3β + ex4β + ex5β
× ex3β

ex2β + ex3β + ex4β + ex5β

L3(β) = 2ex2βex3β

(ex2β + ex3β + ex4β + ex5β)2

Efron’s Method Efron’s method is also an approximation to the Exact marginal

calculation. Compared to the exact marginal method, it uses the weight to adjust

the subsequent risk set. In our example, patient 2 and 3 failed at time 3 . With

P [A2] representing the possibility that patient 2 failed earlier than patient 3, based

on Equation E.1, it assumes that the possibility that patient 3 failed is out of the

total risk set of ex3β+ex4β+ex5β. With P [A3] representing the possibility that patient

3 failed earlier than patient 2, based on Equation E.2, it assumes that the possibility

that patient 2 failed is out of the total risk set of ex2β +ex4β +ex5β. Efron use average

of two risk sets which is

(ex3β + ex4β + ex5β + ex2β + ex4β + ex5β)/2 = 1
2(ex3β + ex2β) + ex4β + ex5β

as approximation. Thus:

P [A2] = ex2β

ex2β + ex3β + ex4β + ex5β
× ex3β

1
2(ex2β + ex3β) + ex4β + ex5β

P [A3] = ex3β

ex2β + ex3β + ex4β + ex5β
× ex2β

1
2(ex2β + ex3β) + ex4β + ex5β

L3(β) = 2ex2βex3β

(ex2β + ex3β + ex4β + ex5β){1
2(ex2β + ex3β) + ex4β + ex5β}

The Exact-Partial calculation Now we assume patient 2 and 3 did fail at the

same time and treat this problem as multinomial problem. Now two failures are to

happen at the same time among patients 2, 3, 4, 5, the possibilities are:
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• 2 and 3 fail

• 2 and 4 fail

• 2 and 5 fail

• 3 and 4 fail

• 3 and 5 fail

• 4 and 5 fail

The conditional probability that 2 and 3 failed is :

L3(β) = ex2βex3β

ex2βex3β + ex2βex4β + ex2βex3β + ex2βex5β + ex3βex4β + ex3βex5β + ex4βex5β

This method is called the exact-partial calculation.
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Appendix F

Computation of Schoenfeld Residuals

According to Appendix ??, the partial likelihood is given by the following expression:

PL =
n∏
i=1

(
exp{βxi}∑n

j=1 Yij exp{βxj}

)ci
(F.1)

Assuming that there is no tied times and excluding the censoring data, we can retrieve

Equation (F.2):

lp(β) =
m∏
i=1

ex(i)β∑
j∈R(t(i)) e

xjβ
(F.2)

The corresponding log partial likelihood function is

Lp(β) =
m∑
i=1

x(i) − ln

 ∑
j∈R(t(i))

exjβ

 (F.3)

The maximum partial likelihood estimator can be achieved by differentiating the right

hand size of equation F.3 with respect to βk, and set the equation equals zero. The

derivative with respect to β is

∂Lp(β)
∂βk

= ∑m
i=1

xik −
∑

j∈R(ti)
xjke

x′
j
β∑

j∈R(ti)
e
x′
jk
β


= ∑m

i=1

{
xik − x̄wi,k

} (F.4)

where

x̄wik =
∑
j∈R(ti) xjke

x′jβ∑
j∈R(ti) e

x′jβ

The estimator of the Schoenfeld residual for the ith subject on the kthcovariate is

obtained from the Equation (F.4) by substituting the partial likelihood estimator of

the coefficient, β̂,

r̂ik = xik − ˆ̄xwik
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where ˆ̄x =
∑

j∈R(ti)
xjke

x′
j
β̂∑

j∈R(ti)
e
x′
j
β̂

is the estimator of the risk set conditional mean of the co-

variate. The sum of Schoenfeld residuals equal to zero. Intuitively r̂ik is the difference

between the covariate value for the failed observation and the weighted average of

the covariate values (weighted according to the estimate relative hazard form the Cox

proportional hazards model. Grambsch and Thermeau (1994) suggest that scaling

the Schoenfeld residuals by an estimator of its variance yields a residual with greater

diagnostic power than the unscaled residuals. The vector of scaled Schoenfeld resid-

ual is the product of the inverse of the covariance matrix times the vector of residuals,

namely

r̂∗i =
[
V̂ ar(r̂i)

]−1
r̂i (F.5)

The elements in the covariance matrix ˆV ar(r̂i) are a weighted version of the usual

sum-of-squares matrix computed using the data in the risk set. For the ith subject,

the diagonal elements in this matrix are:

V̂ ar(r̂i)kk =
∑

j∈R(ti)
ŵij(xjk − ˆ̄xwik)2 (F.6)

And the off diagonal elements in the matrix are

V̂ ar(r̂i)kl =
∑

j∈R(ti)
ŵij(xjk − ˆ̄xwik)(xjl − ˆ̄xwi,k)

where ŵij = e
x′
j β̂∑

l∈R(ti)
ex
′
l
β̂

However, there is an approximation for F.5 which is:

r̂∗i = mV̂ ar(β̂)r̂i

with m being the number of observed uncensored events.

Deleted Link test from accessing the adequacy of the proportional hazard

function. Link Test: It is a test based on re-estimation. If our original model is

correctly specified, adding additional variables will contribute little or no explanatory
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Table F.1 Link Test for HDE50

Haz. Ratio Robust Std. Err. z P>z [95% CIE]
β̂1 3.392802 3.11362 1.33 0.183 0.561564 20.49829
β̂2 1.33929 1.687839 0.23 0.817 0.1132789 15.83436

power to the original model. In this test, we first retrieve β̂x from the Cox proportional

model and plug β̂x into the equation: LRH = β1(xβ̂x)+β2(xβ̂x)2. If xβ̂x is the correct

specification to the original model, we should have β1 = 1 and β2 = 0. According to

Table F.1, the coefficient for β̂2 is not statistically significant. So it verifies that the

coefficient on the squared linear predictor is insignificant.
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Appendix G

Testing the PH Assumption

According to the Cox PH model, the ratio of the hazard functions between any two

groups should be independent of time. Although both hazards would have increased

after, say, 10 years, their ratio should be the same as in the first year. Here, we check

whether this PH condition is valid in our data.

If the PH model is correct, the survival function of one group (say, ovl = 1) is

related to the survival function of the other group (ovl = 0) as follows:1

S1 (t) = S0 (t)exp(βovl) (G.1)

This means that lnS1 = lnS0 exp (βovl), where we note that lnS1 < 0 and lnS0 < 0

since survival functions are positive but less than 1. Multiply both sides of the log

expression by −1 (to make each side positive) and take the natural log a second time

to yield:

ln[− lnS1]− ln[− lnS0] = βovl (G.2)

In words, Equation (G.2) says that there should be an equal distance of βovl between

the two transformed survival functions over analysis time, assuming all the other

covariates x−i are the same in the two groups.

In Figure G.1 we plot the transformed Kaplan-Meier survival functions against

the natural log of time. The top line is for ovl = 1 and the bottom line for ovl = 0.

1To see this, note that h(t|xi, x−i) = h0(t)exp(xβx) implies that the cumulative hazard can be
written as
H(t|xi) =

´ t
0 h(t|xi, x−i)dt =

´ t
0 h0(t)exp(XB)dt = exp(XB)

´ t
0 h0(t)dt = exp(XB)H0(t). By

definition, S(t) = e−exp(XB)H0(t) = e−H0(t)exp(XB) = S0(t)exp(XB) .
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Figure G.1 Transformed Survival Functions

The two lines are roughly parallel to each other, which suggests that the PH condition

holds.

There are two other methods that rely on the scaled Schoenfeld residuals2. If the

Cox PH assumption is correct, Grambsch and Therneau (1994) showed that these

residuals, scaled in a certain way, should have a zero slope when graphed with respect

to failure time. Our visual inspection of the residuals (not shown) confirms a lack of

a relationship between the residuals and the failure date, t.

There is also a formal test based on the Schoenfeld residuals. According to the

Cox model, the coefficient of the covariate x on the survival experience should be

2A Schoenfeld residuals is the difference between the covariate value of a failed observation and
a weighted average of covariate values over subjects at risk of failure at that time. The weights come
from the estimates of the Cox model. See Grambsch and Therneau (1994) and Mario Cleves and
Marchenko (2016).
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Table G.1 Test of the PH Assumption

Covariate df g(t) = t g(t) = ln(t) g(t) = ŜKM(t) g(t) = rank(t)
chi2 p chi2 p chi2 p chi2 p

ovl 1 1.21 0.271 0.97 0.324 0.96 0.326 1.13 0.289
dev 1 0.15 0.701 0.81 0.367 0.90 0.342 0.82 0.364
inf 1 0.00 0.976 0.00 0.951 0.00 0.945 0.00 0.952

Global 3 1.59 0.662 2.21 0.530 2.31 0.511 2.40 0.493

constant in time. Assume that the coefficient is given by:

β(t) = a+ bg(t) (G.3)

where a and b are constants, and g(t) is some function of time. If the PH assumption

holds, then b = 0. Grambsch and Therneau (1994) proved that the mean of the

approximation of scaled Schoenfeld residuals has the form:

E(r(t)) ∼= bg(t)

where r (t) are the Schoenfeld residuals. If we specify the g (t) function we can use

regression tests of the residuals to see if b̂ = 0. Table G.1 shows the results of the

tests using four common specifications of the function g (t). In the table, ŜKM (t)

refers to the Kaplan-Meier estimate of the survival function and rank (t) is the rank

of each failure. All the p-values in Table G.1 are higher than 0.1, so we fail to reject

the null hypothesis. The main results in Table G.1 show no evidence of violation of

the proportional hazard assumption.

152



www.manaraa.com

Appendix H

Goodness of Fit

If the Cox PH model fits the data well, the true cumulative hazard function H0 (t) has

an exponential distribution with a hazard rate of 1. Although the Cox model does

not assume a particular form for the baseline hazard function, we can back out an

estimate of the baseline cumulative hazard Ĥ0 conditional on β̂ that was estimated

in fitting the Cox model to our data. Now define the Cox-Snell residual for the jth

observation to be:

CSj = Ĥ0 (tj) exp
(
Xjβ̂

)
(H.1)

The better the model fit, the closer the estimated cumulative hazards rate of

the Cox-Snell residuals themselves would be to 45-degree line passing through the

origin. We use the Nelson-Aalen method to estimate the cumulative hazard rate

of the Cox-Snell residuals. That is, we treat the CS residuals as the time variable

and the original data as exit or “failure” data, and then generate the Nelson-Aalen

cumulative hazard function and plot it against the CS residuals. The result is shown

in Figure H.1.

Our estimate of the cumulative hazard of the Cox snell residuals (solid line) moves

fairly closely around the dashed 45-degree line. Some variability around the 45 degree

line is normal even if we have a well fitted model. Thus, the Cox-Snell residuals

suggest that the Cox model fits the data well.
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Figure H.1 Goodness of Fit
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Appendix I

Alternative Thresholds for Defining High-Debt

Episodes

Here, we show the regression results of the Cox PH model using different threshold

standards for the definition of ovl, which is associated with the definition of HDE.

HDE80 uses the threshold for debt-to-GDP of 80 percent; HDE70 uses the threshold

of 70 percent. The results are shown in Table I.1. When we use HDE80, the hazard

ratio for ovl is e−0.572 = 0.564 and it is statistically significant at the 10 percent

level; when we use HDE70, the hazard ratio for ovl is e−0.224 = 0.799 and it is not

statistically significant.

This provides support for the idea that the effect of debt is non-linear. Only high-

debt episodes above a certain threshold will affect or be associated with difficulty in

quitting the negative growth episode. Interestingly, the association of inflation and

duration is considerably larger in the cases of lower debt thresholds.
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Table I.1 Cox Model with HDE70 and
HDE80

Coefficient HDE80 HDE70

ovl −0.572* −0.224
(0.250) (0.258)

dev 0.351 0.422
(0.293) (0.297)

inf 0.507*** 0.552***
(0.188) (0.192)

Exits 76 76
N 800 800

Standard Errors in Parentheses
*** p < 0.01 , **p < 0.05, *p < 0.10
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Appendix J

The Five AFT Parametric Models

In this part, I provide more detailed about the five parametric models that have

the AFT metrics: the Weibull, exponential, log-normal, log-logistic and generalized

gamma regression models and how they are different from each other.

Equation (4.2) in the text is:

ln (Tj) = XB + ln (εj) (J.1)

It can be expressed as:

ln(Tj) = XB + ln(εj) = xjβx + β0 + uj (J.2)

where uj = ln(εj)

J.1 Exponential Model

In the exponential model, we assume that

εj ∼ Exponential{exp(β0)}

εj is assumed to be distributed as exponential with mean exp (β0). And 1it turns out

that:

E{ln(Tj)|xj} = xjβx + β0 + Γ′(1)

where Γ′(1) ≈ −0.577 is the negative of Euler’s constant.

1uj follows the extreme value distribution which is the limiting distribution (as n→∞) of the
minimum of a large number of unbounded i.i.d random variables. In my paper, durations of the
episode are values bounded below by zero. Thus the limiting distribution here is also called Gumbel
distribution or the log-Weibull distribution.
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J.2 Weibull Model

In the Weibull model, we assume that

εj ∼ Weibull{β0, λ}

So εj follows Weibull distribution with two parameters (β0, λ) where λ is called the

shape parameter. Now:

E{ln(Tj)|xj} = β0 + Γ′(1)
λ

+ xjβx

J.3 Log-normal Regression

If εi ∼ lognormal(β0, σ) with two parameters β0 and σ, Equation (4.2) is called the

log-normal regression2. In this case:

E{ln(Tj)|xj} = β0 + xjβx + E{uj} (J.3)

where uj follows a standard normal distribution with mean zero and standard devi-

ation of σ, it follows that:

E{ln(Ti)|xi} = β0 + xjβx (J.4)

J.4 Log-logistic Regression

If εi ∼ loglogistic(β0, γ), we assume that εj has log-logistic distribution with two

parameters β0 and γ, and Equation (4.2) is called the log-logistic regression. Mean-

while, uj in Equation (J.2) follows a logistic distribution with mean 0 and standard

deviation πγ/
√

3. As a result, E{ln(ti)|xi} is the same as equation (J.4) for the

log-normal regression model.

2The corresponding cumulative distribution function is F (ε) = Φ( ln ε−β0
σ ). Φ() is the cumulative

distribution function from a standard normal distribution.
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J.5 Generalized Gamma Regression

If εj ∼ GenGamma(β0, κ, σ), we have the generalized gamma regression with three

parameters β0, κ, σ, resulting in:

E{ln(Tj|xj} = β0 + xjβx + E(uj)

where E(uj) = σΓ(γ)√
γΓ′(γ) + ln(γ) with γ = |κ|−2 and Γ() being the gamma function.

This model’s hazard function is flexible in that it can have many different shapes. So

this model is often used as one standard to help us to choose the most appropriate

parametric model.
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Appendix K

Odds Ratio

Odds of some events refer to the likelihood that the event will take place. The Odds

ratio is the ratio of the odds of an event occurring in one group to the odds of it

occurring in another group.

One advantage of using the log-logistic regression is its slope coefficient can be

expressed as an odds-ratio which is independent of time. The odds ratio is a measure

of relative effect. In our paper, it can help the comparison of survival experience of

the group with (ovl = 1) relative to the group without HDE (ovl = 0). According

to Cox and Oakes (1984), the log-logistic model is the only AFT model which has a

proportional odds ratio that is independent of time. To get the odds-ratio, we begin

by writing the survival function of the log-logistic regression:

S(tj|Xj) = [1 + {exp(−β0 − xjβx)tj}
1
γ ]−1 (K.1)

The odds of surviving for at least time tj is:

S(tj|xj)
1− S(tj|xj)

= exp(−(ln(tj)− β0 − xjβx)
γ

)

Based on this equation, the odds ratio at time t, evaluated at ovl = 1 and ovl = 0 is

OR(t, ovl = 1, ovl = 0) =
exp[−(ln(t)−β0−βY HDE∗1−x−iβx)

γ
]

exp[−(ln(t)−β0−βY HDE∗0−x−iβx)
γ

]
= exp(βovl/γ) (K.2)

Based on Table 4.1, γ̂ = 0.280. Then for the dummy covariate ovl, the odds-ratio

equals exp(0.546/0.280) = 7.029. The odds of survival beyond time t for NGEs with

high debt is 7.029 times that of the NGEs without high debt episode, this holds for all
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time t. For the continuous covariate inf , the odds ratio equals exp(−0.183/0.280) =

0.520 < 1, one unit increase in inflation is associated with lower odds of surviving

beyond time t.
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